availability model
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Enzhi Dong ◽  
Zhonghua Cheng ◽  
Rongcai Wang ◽  
Xiaona Zhang

For multicomponent products, the maintenance of every component separately will increase the downtime and reduce the availability of products during the warranty period. To solve this problem, the economic dependence between the components is considered in this paper. Firstly, a single-component two-dimensional (2D) preventive maintenance (PM) availability model is established, and the simulated annealing algorithm is adopted to calculate the optimal 2D PM interval to achieve the maximal availability of any single component. Then, to ensure that the warranty cost of each component does not exceed the budget, the PM benchmark interval is introduced, and the PM work is optimized following the method of grouping maintenance. Based on this, the 2D preventive grouping maintenance availability model of multicomponent products is established. Finally, an example is given to verify the proposed method, and the results indicate that the proposed method increases the availability of multicomponent products during the 2D warranty period.


2021 ◽  
Author(s):  
Anas Maihulla ◽  
Ibrahim Yusuf ◽  
Saminu Bala

Abstract The main objective of the present study is to analyze the availability of solar photovoltaic system. The solar photovoltaic system in this paper is simple one consisting of four subsystems namely, solar panel subsystem, charge controller subsystem, batteries subsystem and inverter subsystem. Through the schematic diagram of state of the system, availability model is formulated and Chapmen - Kolmogorov differential equations are developed and solved using Gumbel Haugaard family Copula technique. The numerical values for availability, reliability, mean time to failure (MTTF), cost analysis as well as sensitivity analysis are presented. The effects of failure rates to various solar photovoltaic subsystems were developed.


IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 310-325
Author(s):  
Shensheng Tang ◽  
Yi Xie

Internet of Things (IoT) is improving human life in a more convenient and simpler way. One of the most promising IoT applications is healthcare. In this paper, an availability model of a healthcare IoT system is proposed which is composed of two groups of structures described by separate Markov state-space models. The two separate models are analyzed and combined to implement the whole IoT system modeling. The system balance equations are solved under a given scenario and some performance metrics of interest, such as probabilities of full service, degraded service, and the system unavailability, are derived. Detailed numerical evaluation of selected metrics is provided for further understanding and verification of the analytic results. An availability performance improving (API) method is also proposed for increasing the probability of system full service and decreasing the system unavailability. The proposed system modeling and performance improving method can serve as a useful reference for general IoT system design and evaluation.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 846
Author(s):  
Junjun Zheng ◽  
Hiroyuki Okamura ◽  
Tadashi Dohi

In software reliability engineering, software-rejuvenation and -checkpointing techniques are widely used for enhancing system reliability and strengthening data protection. In this paper, a stochastic framework composed of a composite stochastic Petri reward net and its resulting non-Markovian availability model is presented to capture the dynamic behavior of an operational software system in which time-based software rejuvenation and checkpointing are both aperiodically conducted. In particular, apart from the software-aging problem that may cause the system to fail, human-error factors (i.e., a system operator’s misoperations) during checkpointing are also considered. To solve the stationary solution of the non-Markovian availability model, which is derived on the basis of the reachability graph of stochastic Petri reward nets and is actually not one of the trivial stochastic models such as the semi-Markov process and the Markov regenerative process, the phase-expansion approach is considered. In numerical experiments, we illustrate steady-state system availability and find optimal software-rejuvenation policies that maximize steady-state system availability. The effects of human-error factors on both steady-state system availability and the optimal software-rejuvenation trigger timing are also evaluated. Numerical results showed that human errors during checkpointing both decreased system availability and brought a significant effect on the optimal rejuvenation-trigger timing, so that it should not be overlooked during system modeling.


Author(s):  
Niels A Taatgen ◽  
Marieke K van Vugt ◽  
Jeroen Daamen ◽  
Ioanna Katidioti ◽  
Stefan Huijser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document