shear stress function
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 9 (17) ◽  
pp. 3503 ◽  
Author(s):  
Sang-Ho Kim ◽  
Sun-Jin Han ◽  
Kang Kim

This study suggests a novel beam-column element formulation that utilizes an equilibrium-driven shear stress function. The beam shear is obtained from the bi-axial states of micro-planes, through matrix condensation and zero vertical traction assumptions. This properly remedies the shear stiffening of a one-dimensional beam-column element, keeping its degrees of freedom to a minimum. For verification of the proposed method, a total of seven shear test results of reinforced concrete (RC) beams were collected from the literature, in which the key variables were the reinforcement ratio, the presence of shear reinforcement, and section shape. The advantages are clearly shown in the shear stresses distributions being accurately described and the global load-displacement relations being successfully obtained and matching well with various test results. The proposed model shows satisfactory descriptions of the monotonic load-displacement response of the RC beams failing in multiple modes that vary from diagonal-tension to flexural-compression. In addition, more accurate and reliable information of sectional responses including sectional shear deformation and stresses is collected, leading to better prediction of a potential shear failure mode. Finally, the advantages of the proposed model are demonstrated by comparing the analysis results of an RCT-beam by using the different shear assumptions that include the constant and parabolic shear strains, constant shear flow, and the proposed shear stress function.


2015 ◽  
Vol 61 (229) ◽  
pp. 837-850 ◽  
Author(s):  
Perry Bartelt ◽  
Cesar Vera Valero ◽  
Thomas Feistl ◽  
Marc Christen ◽  
Yves Bühler ◽  
...  

AbstractFlowing snow is a cohesive granular material. Snow temperature and moisture content control the strength of the cohesive bonding between granules and therefore the outcome of granular interactions. Strong, cohesive interactions reduce the free mechanical energy in the avalanche core and therefore play a significant role in defining the avalanche flow regime. We introduce cohesion into avalanche dynamics model calculations by (1) treating cohesion as an additional internal binding energy that must be overcome to expand the avalanche flow volume, (2) modifying the Coulomb stress function to account for the increase in shear because of cohesive interactions and (3) increasing the activation energy to control the onset of avalanche fluidization. The modified shear stress function is based on force measurements in chute experiments with flowing snow. Example calculations are performed on ideal and real terrain to demonstrate how snow cohesion modifies avalanche flow and runout behaviour.


2008 ◽  
Vol 13 (4) ◽  
pp. 419-432 ◽  
Author(s):  
S. K. Ghosh ◽  
O. Anwar Beg

The purpose of the present investigation deals with the unsteady free convective flow of a viscous incompressible gray, absorbing-emitting but non-scattering, optically-thick fluid occupying a semi-infinite porous regime adjacent to an infinite moving hot vertical plate with constant velocity. We employ a Darcian viscous flow model for the porous medium. The momentum and thermal boundary layer equations are non-dimensionalized using appropriate transformations and then solved subject to physically realistic boundary conditions using the Laplace transform technique. Thermal radiation effects are simulated via a radiation-conduction parameter, Kr, based on the Rosseland diffusion approximation. The influence of Grashof (free convection) number, radiation-conduction parameter (Kr), inverse permeability parameter (Kp) and dimensionless time (t) are studied graphically. We observe that increasing thermal radiation parameter causes a noticeable increase in the flow velocity, u. Temperature, θ, is significantly increased within the boundary layer with a rise in Kr since the latter represents the relative contribution of thermal radiation heat transfer to thermal conduction heat transfer. Increased radiation therefore augments heat transfer, heats the fluid and increases the thickness of the momentum and thermal boundary layers. Velocity is found to decrease with an increase in Kp (inverse permeability parameter) as are shear stress function ( ∂u/∂y | y=0) magnitudes owing to greater resistance of the porous medium for lower permeabilities, which decelerate the flow. An increase in Kr however boosts the shear stress function magnitudes i.e. serves to accelerate the flow. Temperature gradient, ∂θ/∂y | y=0 is also positively affected by an increase in thermal radiation (Kr) and with time. The present study has applications in geological convection, forest fire propagation, glass heat treatment processes at high temperature, metallurgical processing etc.


2006 ◽  
Vol 129 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Alfeus Sunarso ◽  
Takehiro Yamamoto ◽  
Noriyasu Mori

We performed numerical simulation to investigate the effects of wall slip on flow behaviors of Newtonian and non-Newtonian fluids in macro and micro contraction channels. The results show that the wall slip introduces different vortex growth for the flow in micro channel as compared to that in macro channel, which are qualitatively in agreement with experimental results. The effects of slip on bulk flow behaviors depend on rheological property of the fluid. For Newtonian fluid, the wall slip always reduces the vortex length, while for non-Newtonian fluid, the strength of the slip determines whether the vortex length is reduced or increased. Analyses on the velocity and stress fields confirm the channel size dependent phenomena, such as the reduction of wall shear stress with the decrease in channel size. With the increase in average shear rate, the Newtonian fluid shows the reduction of wall shear stress that increases in the same trend with slip velocity-wall shear stress function, while for non-Newtonian fluid, the effect of the slip is suppressed by shear thinning effect and, therefore, the reduction of wall shear stress is less sensitive to the change in average shear rate and slip velocity-wall shear stress function.


Sign in / Sign up

Export Citation Format

Share Document