scholarly journals IFNγ reduces viability in human conjunctival goblet cells in vitro

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
Pernille Rævdal ◽  
Anne Hedengran Nagstrup ◽  
Jacob Pontoppidan Thyssen ◽  
Steffen Heegaard ◽  
Miriam Kolko
2021 ◽  
pp. 69-75
Author(s):  
Anne Hedengran ◽  
Xenia Begun ◽  
Olivia Müllertz ◽  
Zaynab Mouhammad ◽  
Rupali Vohra ◽  
...  

<b><i>Introduction:</i></b> Most intraocular pressure (IOP)-lowering eye drops are preserved with benzalkonium chloride (BAK). This can increase side effects and decrease adherence. Particularly, damage to the mucin-producing conjunctival goblet cells may be an issue due to instability of the tear film. We aimed to investigate the effect of IOP-lowering eye drops preserved with BAK on cultured human conjunctival goblet cells. <b><i>Methods:</i></b> Eye drops Brimonidine Tartrate Teva (BT) with 0.005% BAK, Dorzolamide Stada (DS) with 0.0075% BAK, Optimol<sup>®</sup> (OP) with 0.01% BAK, and Latanoprost Teva (LT) with 0.02% BAK were included. Human primary cultured goblet cell survival was evaluated using a lactate dehydrogenase assay on human goblet cells after treatment for 30 min and 6 h with the different anti-glaucoma drug formulations. <b><i>Results:</i></b> All eye drops examined, except BT, reduced goblet cell survival. The impact of eye drops on goblet cell viability was correlated with the time of exposure as well as to the concentration of BAK. After 30 min of exposure, cell viability was 93% for BT (0.005% BAK; <i>p</i> = 0.93), 71% for DS (0.0075% BAK; <i>p</i> = 0.067), 70% for OP (0.01% BAK; <i>p</i> = 0.054), and 69% for LT (0.02% BAK; <i>p</i> = 0.022), and exposure for 6 h reduced cell survival to 74% for BT (<i>p</i> = 0.217), 52% for DS (<i>p</i> = 0.011), 34% for OP (<i>p</i> = 0.017), and 31% for LT (<i>p</i> = 0.0007). <b><i>Conclusion:</i></b> LT, OP, and DS reduced human goblet cell survival in a time-dependent manner. BT did not affect goblet cell survival. Cell survival was correlated with the BAK concentration in the eye drops making 0.02% BAK-preserved LT most toxic and 0.005% BAK-preserved BT least toxic. Based on the present study, decreasing BAK in eye drops for chronic use seems important to reduce damage to the goblet cells. However, future studies are needed to further explore this finding.


2021 ◽  
Vol 22 (19) ◽  
pp. 10528
Author(s):  
Sara I. Van Acker ◽  
Bert Van den Bogerd ◽  
Zoë P. Van Acker ◽  
Agnė Vailionytė ◽  
Michel Haagdorens ◽  
...  

One key element to the health of the ocular surface encompasses the presence of gel-forming mucins in the pre-ocular tear film. Conjunctival goblet cells are specialized epithelial cells that secrete mucins necessary for tear film stability and general homeostasis. Their dysfunction can be linked to a range of ocular surface inflammation disorders and chronic injuries. To obtain new perspectives and angles to tackle mucin deficiency, the need for an accurate evaluation of their presence and corresponding mucin secretion in ex vivo conjunctival cultures has become a requisite. In vitro, goblet cells show a significant decrease in the production and secretion of gel-forming mucins, accompanied by signs of dedifferentiation or transdifferentiation. Explant cultures on laminin-treated CLP-PEG hydrogels can, however, support the production of gel-forming mucins. Together, we challenge the current paradigm to evaluate the presence of cultured goblet cells solely based on their general mucin (MUC) content through imaging analyses, showing the need for additional techniques to assess the functionality of goblet cells. In addition, we broadened the gel-forming mucin profile of in vivo goblet cells with MUC5B and MUC6, while MUC2 and MUC6 is added to the profile of cultured goblet cells.


Cornea ◽  
2006 ◽  
Vol 25 (5) ◽  
pp. 573-581 ◽  
Author(s):  
José D. Ríos ◽  
Marie Shatos ◽  
Hiroki Urashima ◽  
Hao Tran ◽  
Darlene A. Dartt

1997 ◽  
Vol 235 (11) ◽  
pp. 717-722 ◽  
Author(s):  
Antonio Micali ◽  
Domenico Puzzolo ◽  
Alba M. Arco ◽  
Antonina Pisani ◽  
Giuseppe Santoro ◽  
...  

2021 ◽  
Author(s):  
Shijie He ◽  
Peng Lei ◽  
Wenying Kang ◽  
Priscilla Cheung ◽  
Tao Xu ◽  
...  

SummaryDoes fibrotic gut stiffening caused by inflammatory bowel diseases (IBD) direct the fate of intestinal stem cells (ISCs)? To address this question we first developed a novel long-term culture of quasi-3D gut organoids plated on hydrogel matrix of varying stiffness. Stiffening from 0.6kPa to 9.6kPa significantly reduces Lgr5high ISCs and Ki67+ progenitor cells while promoting their differentiation towards goblet cells. These stiffness-driven events are attributable to YAP nuclear translocation. Matrix stiffening also extends the expression of the stemness marker Olfactomedin 4 (Olfm4) into villus-like regions, mediated by cytoplasmic YAP. We next used single-cell RNA sequencing to generate for the first time the stiffness-regulated transcriptional signatures of ISCs and their differentiated counterparts. These signatures confirm the impact of stiffening on ISC fate and additionally suggest a stiffening-induced switch in metabolic phenotype, from oxidative phosphorylation to glycolysis. Finally, we used colon samples from IBD patients as well as chronic colitis murine models to confirm the in vivo stiffening-induced epithelial deterioration similar to that observed in vitro. Together, these results demonstrate stiffness-dependent ISC reprograming wherein YAP nuclear translocation diminishes ISCs and Ki67+ progenitors and drives their differentiation towards goblet cells, suggesting stiffening as potential target to mitigate gut epithelial deterioration during IBD.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 277-289
Author(s):  
Tohru Masui

To reveal differentiation potency of yolk-sac endoderm, this tissue from quail embryos was cultured alone or in association with digestive-tract mesenchymes of chick embryos. When yolk-sac endoderm was cultured alone in vitro, the endoderm of the area vitellina differentiated into the yolk-sac parenchyma, but the endoderm of the extraembryonic area pellucida (EEAP) failed to differentiate into yolk-sac parenchyma, and the endoderm of the area vasculosa became necrotic. When endoderm of the area vitellina was cultured in association with digestive-tract mesenchymes, all the endodermal cells developed into yolk-sac parenchymal cells after two days. Later, basophilic cells appeared among them, and differentiated into both mesenchymespecific epithelia and intestinal-type epithelium with a striated border, and villi were also formed. Goblet cells appeared in all types of recombinations. The endoderm of the EEAP cultured with digestive-tract mesenchymes gave similar results to that of the area vitellina. In contrast, endoderm of the area vasculosa, when cultured with digestive-tract mesenchymes,became necrotic. The present investigation demonstrated that the endoderms of the area vitellina and of the EEAP differ in self-differentiation potency, and that their developmental fates can be modified by the influence of digestive-tract mesenchymes. These endoderms can differentiate into the mesenchyme-specific epithelia, though they often differentiate also into the intestinal-type epithelium.


Sign in / Sign up

Export Citation Format

Share Document