scholarly journals Study on Chaotic Peculiarities of Magnetic-Mechanical Coupled System of Giant Magnetostrictive Actuator

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hongbo Yan ◽  
Enzuo Liu ◽  
Pengbo Zhao ◽  
Pei Liu ◽  
Rui Cao

We studied the chaotic peculiarities of magnetic-mechanical coupled system of GMA. Based on the working principle of GMA and according to Newton’s second law of motion, first piezomagnetic equation, disk spring design theory, and structural dynamics principle of GMA, the present study established a GMA magnetic-mechanical coupled system model. By carrying out data modeling of this coupled system model, the bifurcation chart of the system with the variation of damping factor, excitation force, and exciting frequency parameters as well as the homologous offset oscillogram, phase plane trace chart, and Poincaré diagram was obtained, and the chaotic peculiarities of the system were analyzed. The influence of parametric errors on the coupled system was studied. The analytical results showed that the oscillation equation of the GMA magnetic-mechanical coupled system had nonlinearity and the movement morphology was complicated and diversified. By adjusting the damping factor, exciting frequency, and excitation force parameters of the system, the system could work under the stable interval, which provided theoretical support for the stability design of GMA.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


2012 ◽  
Vol 155-156 ◽  
pp. 746-750
Author(s):  
Wei Wei Zhang ◽  
Jun Zhou ◽  
Jian Xin Deng

On the background of increasing demand of construction machinery, the requirement of energy saving without affecting performance, safety and reliability put great pressure on engineering staffs. A comprehensive grasp of the whole system in constitution and working principle exactly helps designers in control and modifications theoretically. Evaluations and discusses in this article are based on a model in Simulation X, and variable geometry parameters in the system model make the matching of desired result easily. A successful model build for working devices of the wheel loader, and all technical result can be acquired easily in the soft ware, the result curves can easily revealed the requirement of optimizing the design of the whole machine.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ebenezer Bonyah ◽  
Isaac Dontwi ◽  
Farai Nyabadza

The management of the Buruli ulcer (BU) in Africa is often accompanied by limited resources, delays in treatment, and macilent capacity in medical facilities. These challenges limit the number of infected individuals that access medical facilities. While most of the mathematical models with treatment assume a treatment function proportional to the number of infected individuals, in settings with such limitations, this assumption may not be valid. To capture these challenges, a mathematical model of the Buruli ulcer with a saturated treatment function is developed and studied. The model is a coupled system of two submodels for the human population and the environment. We examine the stability of the submodels and carry out numerical simulations. The model analysis is carried out in terms of the reproduction number of the submodel of environmental dynamics. The dynamics of the human population submodel, are found to occur at the steady states of the submodel of environmental dynamics. Sensitivity analysis is carried out on the model parameters and it is observed that the BU epidemic is driven by the dynamics of the environment. The model suggests that more effort should be focused on environmental management. The paper is concluded by discussing the public implications of the results.


2014 ◽  
Vol 532 ◽  
pp. 191-195 ◽  
Author(s):  
Bao Jiang Sun ◽  
Lei Su ◽  
Chao Zhang

In order to solve the problem that the big loss of no-load and the fast rise of temperature when employ the conventional silicon steel metal transformer (SSMT) in the electric heating system, we choose the amorphous metal transformer (AMMT). In this paper, firstly, we give a brief introduction of the amorphous alloy material properties and compare the no-load characteristic of the AMMT with the SSMT. Secondly, the structure of intermediate frequency heating system working principle and control strategy are introduced. Finally, extensive experiments were conducted to validate the ideas. The experiments show that the AMMT not only improve the efficiency of transformer, solve the heating problem of transformer, but also improve the stability, security and other technical performance of the system, so it is worth recommending and promoting.


2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


2016 ◽  
Vol 24 (4) ◽  
pp. 659-672 ◽  
Author(s):  
Elena Ivanova ◽  
Xavier Moreau ◽  
Rachid Malti

The interest of studying fractional systems of second order in electrical and mechanical engineering is first illustrated in this paper. Then, the stability and resonance conditions are established for such systems in terms of a pseudo-damping factor and a fractional differentiation order. It is shown that a second-order fractional system might have a resonance amplitude either greater or less than one. Moreover, three abaci are given allowing the pseudo-damping factor and the differentiation order to be determined for, respectively, a desired normalized gain at resonance, a desired phase at resonance, and a desired normalized resonant frequency. Furthermore, it is shown numerically that the system root locus presents a discontinuity when the fractional differentiation order is an integral number.


2016 ◽  
Vol 3 (1) ◽  
pp. 150570 ◽  
Author(s):  
Tetsuro Funato ◽  
Shinya Aoi ◽  
Nozomi Tomita ◽  
Kazuo Tsuchiya

Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Pei ◽  
Haojun Xu ◽  
Yuan Xue

Current fight boundary of the envelope protection in icing conditions is usually defined by the critical values of state parameters; however, such method does not take the interrelationship of each parameter and the effect of the external disturbance into consideration. This paper proposes constructing the stability boundary of the aircraft in icing conditions through analyzing the region of attraction (ROA) around the equilibrium point. Nonlinear icing effect model is proposed according to existing wind tunnel test results. On this basis, the iced polynomial short period model can be deduced further to obtain the stability boundary under icing conditions using ROA analysis. Simulation results for a series of icing severity demonstrate that, regardless of the icing severity, the boundary of the calculated ROA can be treated as an estimation of the stability boundary around an equilibrium point. The proposed methodology is believed to be a promising way for ROA analysis and stability boundary construction of the aircraft in icing conditions, and it will provide theoretical support for multiple boundary protection of icing tolerant flight.


2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


1982 ◽  
Vol 37 (8) ◽  
pp. 848-858 ◽  
Author(s):  
D. Correa-Restrepo

Resistive ballooning modes in general three-dimensional configurations are studied on the basis of the equations of motion of resistive MHD. Assuming small, constant resistivity and perturbations localized transversally to the magnetic field, a stability criterion is derived in the form of a coupled system of two second-order differential equations. This criterion contains several limiting cases, in particular the ideal ballooning mode criterion and criteria for the stability of symmetric systems. Assuming small growth rates, analytical results are derived by multiple-length-scale expansion techniques. Instabilities are found, their growth rates scaling as fractional powers of the resistivity


Sign in / Sign up

Export Citation Format

Share Document