scholarly journals Subduction and exhumation slip accommodation at depths of 10–80 km inferred from field geology of exhumed rocks: Evidence for temporal-spatial localization of slip

2021 ◽  
Author(s):  
John Wakabayashi

ABSTRACT Field relationships in the Franciscan Complex of California suggest localization of subduction slip in narrow zones (≤300 m thick) at the depths of ∼10–80 km. Accretionary and non-accretionary subduction slip over the ca. 150 Ma of Franciscan history was accommodated across the structural thickness of the complex (maximum of ∼30 km). During accretion of a specific unit (<5 Ma), subduction slip (accretionary subduction slip) deformed the full thickness of the accreting unit (≤5 km), primarily on discrete faults of <20 m in thickness, with the remainder accommodated by penetrative deformation. Some faults accommodating accretionary subduction slip formed anastomosing zones ≤200 m thick that resulted in block-in-matrix (tectonic mélange) relationships but did not emplace exotic blocks. Mélange horizons with exotic blocks range in thickness from 0.5 m to 1 km. These apparently formed by sedimentary processes as part of the trench fill prior to subsequent deformation during subduction-accretion. Accretionary subduction slip was localized within some of these mélanges in zones ≤300 m thick. Such deformation obscured primary sedimentary textures. Non-accretionary subduction faults separate units accreted at different times, but these <100-m-thick fault zones capture a small fraction of associated subduction slip because of footwall subduction and likely removal of hanging wall by subduction erosion. Most exhumation was accommodated by discrete faults ≤30 m thick. Structural, geochronologic, and plate motion data suggest that of the ∼13,000 km of subduction during the ca. 150 Ma assembly of the Franciscan Complex, ∼2000 km was associated with accretion.

1988 ◽  
Vol 129 ◽  
pp. 351-352
Author(s):  
Richard Gordon ◽  
Charles Demets ◽  
Seth Stein ◽  
Don Argus ◽  
Dale Woods

The standard against which VLBI measurements of continental drift and plate motions are compared are self-consistent global models of “present-day” plate motions determined from geophysical data: marine magnetic anomalies at oceanic spreading centers, azimuths of transform faults, and orientations of earthquake slip vectors on transform faults and at subduction zones. Past global plate motion models have defined regions where the assumption that plates behave rigidly has apparently lead to systematic misfits, sometimes exceeding 10 mm/yr, of plate motion data. Here, we present some of the results from NUVEL-1, a new, self-consistent global model of present-day relative plate motions determined from a compilation and analysis of existing and new geophysical data. These data and new techniques have allowed us to eliminate nearly all statistically significant systematic misfits identified by earlier models, suggesting that the rigid-plate assumption is an excellent approximation when plate motions are averaged over several million years. Beside improving estimates of the motion on previously identified plate boundaries, we have also identified and determined motions on other boundaries whose subtle morphologies, lack of seismicity, and very slow (< 10 mm/yr) relative motions have made them difficult to detect. Here we focus on the application of VLBI measurements to help resolve plate tectonic problems and then briefly outline our results for Pacific-North America motion and plate motions in the Indian Ocean.


2012 ◽  
Vol 204-208 ◽  
pp. 119-122
Author(s):  
You Xi Wang ◽  
Guang Zhe Deng

The fault breaks continuous ground stress distribution. The rock mass in fault zone is weak and broken, it becomes stress decreasing zone. The paper, which is combined with engineering practice and rock mechanics test, numerically simulates geological environment of fault zones and analyzes faults trend direction influence on ground stress distribution in the metal mine. The results demonstrates that deep faults breaks down the continuity of ground stress distribution, principle stresses in lower wall of faults are smaller than it in hanging wall while high deep ground stresses are in cross district of hanging-wall of fault-zone and ore bed


Author(s):  
Alik Ismail-Zadeh ◽  
Alexander Soloviev

AbstractDynamics of lithospheric plates resulting in localisation of tectonic stresses and their release in large earthquakes provides important information for seismic hazard assessments. Numerical modelling of the dynamics and earthquake simulations have been changing our view about occurrences of large earthquakes in a system of major regional faults and about the recurrence time of the earthquakes. Here, we overview quantitative models of tectonic stress generation and stress transfer, models of dynamic systems reproducing basic features of seismicity, and fault dynamics models. Then, we review the thirty-year efforts in the modelling of lithospheric block-and-fault dynamics, which allowed us to better understand how the blocks react to the plate motion, how stresses are localised and released in earthquakes, how rheological properties of fault zones exert influence on the earthquake dynamics, where large seismic events occur, and what is the recurrence time of these events. A few key factors influencing the earthquake sequences, clustering, and magnitude are identified including lithospheric plate driving forces, the geometry of fault zones, and their physical properties. We illustrate the effects of the key factors by analysing the block-and-fault dynamics models applied to several earthquake-prone regions, such as Carpathians, Caucasus, Tibet-Himalaya, and the Sunda arc, as well as to the global tectonic plate dynamics.


2021 ◽  
Author(s):  
Michael Warsitzka ◽  
Prokop Závada ◽  
Fabian Jähne-Klingberg ◽  
Piotr Krzywiec

&lt;p&gt;Salt flow in rift basins is mainly driven by sub- and supra-salt extension imposing shear stresses and differential loading on the salt layer. In many rift basins, the graben flanks are tilted as a result of thermal subsidence and sediment load. Such tilt induces additional basin-ward directed stresses potentially causing downward directed salt flow and gravity gliding of the supra-salt overburden. However, sediment loading in extensional basins is usually largest in the basin centre, which would lead to an upward directed salt expulsion and might act as an effective buttress resisting downward gliding.&lt;/p&gt;&lt;p&gt;Our aim is to investigate the opposing influence of sub-salt extension, sedimentary loading and tilting on deformation patterns in the viscous salt and the brittle overburden. We try to assess under which geological configurations (e.g. minimum basin slope or topographic gradient) upward directed salt flow and downward directed gravity gliding are the dominating deformation processes in extensional basins. Therefore, we developed a new analogue modelling apparatus enabling to simulate the processes of tectonic extension of a graben structure and the gradual tilting of the graben flanks, acting either simultaneously or separately. Using digital image correlation technique, temporal and spatial changes of the displacement and strain patterns can be analysed. Cross sections through the final experiments enable to identify structures characteristic for specific driving processes.&lt;/p&gt;&lt;p&gt;Here, we present results of a preliminary experimental study in which the basic influence of flank tilting and syn-kinematic sedimentation on salt tectonics in rift basins is examined. In case that the graben flanks remain flat during extension, widespread extensional fault zones develop on the footwall sides near the graben faults. In case that the flanks are tilted simultaneously with basal extension, additional extensional fault zones evolve at the upslope basin margins resulting from downward gliding of the overburden. In the downslope basin centre, this peripheral extension is balanced by reduced amounts of extension near the graben and later by shortening above the graben bounding faults and the hanging wall graben centre. If syn-kinematic sedimentation is introduced, downslope gravity gliding is significantly reduced and extensional fault zones are rather localized. Peripheral extensional structures observed in the experiments resemble typical thin-skinned extensional structures occurring at the flanks of many salt-bearing rift basins, e.g. the Polish Basin and Norwegian-Danish Basin. Thus, such structures might serve as diagnostic indicators for the occurrence of gravity gliding in rift basins.&lt;/p&gt;


2018 ◽  
Vol 58 (2) ◽  
pp. 805
Author(s):  
Natalie Debenham ◽  
Natalie J. C. Farrell ◽  
Simon P. Holford ◽  
Rosalind C. King ◽  
David Healy

An understanding of the permeability structure and transmissibility of fault zones can have profound implications for reservoir appraisal and development within petroleum systems. Previous investigations on the permeability structure of fault zones often focus on low-porosity host rocks rather than porous sedimentary rocks which more commonly form reservoirs. We present detailed mineralogical and geomechanical data from porous Cretaceous sandstones (Eumeralla Formation) collected at the Castle Cove Fault in the Otway Basin, south-east Australia. Ten orientated sample blocks were collected in the hanging wall at distances within 0.5–225 m from the fault plane. A progressive increase in porosity (~17–24%), permeability (0.04–2.92 mD), and pore throat size and connectivity was observed as the fault plane was approached. High-resolution thin section analyses revealed an increase in grain-scale fractures and deformation of authigenic clays in sandstones adjacent to the Castle Cove Fault plane. The improvement of the permeability structure of the sandstones is attributed to the formation of grain-scale fractures and the change in clay morphology as a result of faulting. This study demonstrates the importance of detailed mineralogical and geomechanical analyses when attempting to understand the reservoir properties of high porosity, low permeability, and clay-rich sandstones.


2021 ◽  
pp. 73-130
Author(s):  
Alan D. Chapman* ◽  
Doug Yule ◽  
William Schmidt ◽  
Todd LaMaskin

ABSTRACT The Klamath Mountains province and adjacent Franciscan subduction complex (northern California–southern Oregon) together contain a world-class archive of subduction-related growth and stabilization of continental lithosphere. These key elements of the North American Cordillera expanded significantly from Middle Jurassic to Early Cretaceous time, apparently by a combination of tectonic accretion and continental arc– plus rift-related magmatic additions. The purpose of this field trip is twofold: to showcase the rock record of continental growth in this region and to discuss unresolved regional geologic problems. The latter include: (1) the extent to which Mesozoic orogenesis (e.g., Siskiyou and Nevadan events plus the onset of Franciscan accretion) was driven by collision of continental or oceanic fragments versus changes in plate motion, (2) whether growth involved “accordion tectonics” whereby marginal basins (and associated fringing arcs) repeatedly opened and closed or was driven by the accretion of significant volumes of material exotic to North America, and (3) the origin of the Condrey Mountain schist, a composite low-grade unit occupying an enigmatic structural window in the central Klamaths—at odds with the east-dipping thrust sheet regional structural “rule.” Respectively, we assert that (1) if collision drove orogenesis, the requisite exotic materials are missing (we cannot rule out the possibility that such materials were removed via subduction and/or strike slip faulting); (2) opening and closure of the Josephine ophiolite-floored and Galice Formation–filled basin demonstrably occurred adjacent to North America; and (3) the inner Condrey Mountain schist domain is equivalent to the oldest clastic Franciscan subunit (the South Fork Mountain schist) and therefore represents trench assemblages underplated &gt;100 km inboard of the subduction margin, presumably during a previously unrecognized phase of shallow-angle subduction. In aggregate, these relations suggest that the Klamath Mountains and adjacent Franciscan complex represent telescoped arc and forearc upper plate domains of a dynamic Mesozoic subduction zone, wherein the downgoing oceanic plate took a variety of trajectories into the mantle. We speculate that the downgoing plate contained alternating tracts of smooth and dense versus rough and buoyant lithosphere—the former gliding into the mantle (facilitating slab rollback and upper plate extension) and the latter enhancing basal traction (driving upper plate compression and slab-shallowing). Modern snapshots of similarly complex convergent settings are abundant in the western Pacific Ocean, with subduction of the Australian plate beneath New Guinea and adjacent island groups providing perhaps the best analog.


2019 ◽  
Vol 56 (12) ◽  
pp. 1285-1296 ◽  
Author(s):  
Raymond V. Ingersoll

Slip on the Nacimiento fault of the central Coast Ranges of California has been variably interpreted as dextral, sinistral, or reverse. The currently prevailing interpretation is that the Nacimiento fault represents subduction erosion, by which the central to eastern part of the Cretaceous California batholith was thrust over the western part of the batholith and forearc basin, resulting in juxtaposition of the Salinian batholithic block against the Franciscan Complex, concurrently with Laramide flat-slab subduction (75–55 Ma) and underplating of the Pelona-Orocopia-Rand schist. No modern convergent plate margin includes such overthrusting. The closest modern analog to the likely configuration of the Salinian continental margin near the end of the Laramide deformation is southern Mexico, where arc plutons are exposed near the trench. Although commonly considered an example of subduction erosion, this margin is “missing” parts of the plutonic arc and forearc because they have been displaced to the southeast by sinistral slip. By analogy, the Nacimiento forearc was modified as a trench-trench-transform triple junction migrated southeastward along the continental margin during flat-slab subduction. This model makes testable predictions involving northwest-to-southeast younging of deep-marine deposits on batholithic crust underlain by contemporaneous schist. Correct restoration of later Cenozoic primarily dextral slip and Maastrichtian – Early Eocene primarily sinistral slip must result in realignment of north–south-trending belts of the Sierra Nevada – Salinia – Peninsular Ranges batholith, Great Valley forearc, and Franciscan Complex. These modern and ancient examples suggest that several “erosional” subduction zones are more plausibly explained by strike-slip truncation of forearcs.


2012 ◽  
Vol 149 (6) ◽  
pp. 1107-1117 ◽  
Author(s):  
ALI FAGHIH ◽  
TIMOTHY KUSKY ◽  
BABAK SAMANI

AbstractKinematic analysis of mélange fabrics provides critical information concerning tectonic processes and evaluation of the kinematics of ancient relative plate motion. Systematic kinematic analysis of deformed structures within a tectonic mélange exposed along the Zagros Suture Zone elucidates that this zone is an ancient transpressional boundary. The mélange is composed of a greywacke and mudstone matrix surrounding various lenses, blocks and ribbons of radiolarian chert, limestone, sandstone, pillow lava, tuff, serpentinite, shale and marl. The deformation fabrics of the mélange suggest that the mélange units were tectonically accreted at shallow levels within a subduction complex, resulting in layer-parallel extension and shearing along a NW–SE-trending suture that juxtaposes the Afro-Arabian continent to the south and the Central Iranian microcontinents to the north. The tectonic mélange is characterized by subhorizontal layer-parallel extension and subsequent heterogeneous non-coaxial shear resulting in alternating asymmetric and layer-parallel extensional fabrics such as P–Y fabrics and boudinaged layers. Kinematic data suggest that the mélange formed during oblique subduction of the Neo-Tethys oceanic lithosphere in Late Cretaceous time. Kinematic shear sense indicators reveal that the slip direction (N9°E to N14°E) during accretion-related deformations reflects the relative plate motion between the Afro-Arabian continent and Central Iranian microcontinents during Late Cretaceous to Miocene times.


Sign in / Sign up

Export Citation Format

Share Document