scholarly journals Cloud Feedbacks from CanESM2 to CanESM5.0 and their influence on climate sensitivity

2021 ◽  
Vol 14 (9) ◽  
pp. 5355-5372
Author(s):  
John G. Virgin ◽  
Christopher G. Fletcher ◽  
Jason N. S. Cole ◽  
Knut von Salzen ◽  
Toni Mitovski

Abstract. The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an effective climate sensitivity (EffCS) of 5.65 K, which is a 54 % increase relative to the model's previous version (CanESM2 – 3.67 K), and the highest sensitivity of all current models participating in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we explore the underlying causes behind CanESM5's increased EffCS via comparison of forcing and feedbacks between CanESM2 and CanESM5. We find only modest differences in radiative forcing as a response to CO2 between model versions. We find small increases in the surface albedo and longwave cloud feedback, as well as a substantial increase in the SW cloud feedback in CanESM5. Through the use of cloud area fraction output and cloud radiative kernels, we find that more positive low and non-low shortwave cloud feedbacks – particularly with regards to low clouds across the equatorial Pacific, as well as subtropical and extratropical free troposphere cloud optical depth – are the dominant contributors to CanESM5's increased climate sensitivity. Additional simulations with prescribed sea surface temperatures reveal that the spatial pattern of surface temperature change exerts controls on the magnitude and spatial distribution of low-cloud fraction response but does not fully explain the increased EffCS in CanESM5. The results from CanESM5 are consistent with increased EffCS in several other CMIP6 models, which has been primarily attributed to changes in shortwave cloud feedbacks.

2021 ◽  
Author(s):  
John G. Virgin ◽  
Christopher G. Fletcher ◽  
Jason N. S. Cole ◽  
Knut von Salzen ◽  
Toni Mitovski

Abstract. The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an Effective Climate Sensitivity (ECS) of 5.65 kelvin, which is a 54 % increase relative to the model's previous version (CanESM2 – 3.67 K), and the highest sensitivity of all current models participating in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we explore the underlying causes behind CanESM5's increased ECS via comparison of forcing and feedbacks between CanESM2 and CanESM5. We find only modest differences in radiative forcing as a response to CO2 between model versions. Through the use of cloud area fraction output and radiative kernels, we find that more positive shortwave cloud feedbacks – particularly with regards to low clouds across the equatorial pacific, as well as sub/extratropical free troposphere cloud optical depth – are the dominant contributors to CanESM5's increased climate sensitivity. Additional simulations with prescribed sea surface temperatures reveal that the spatial pattern of surface temperature change explains the pattern of change in low cloud fraction, but does not fully explain the increased ECS in CanESM5. The results from CanESM5 are consistent with increased ECS in several other CMIP6 models, which has been primarily attributed to changes in shortwave cloud feedbacks.


2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2021 ◽  
Author(s):  
Sebastian Steinig ◽  
Jiang Zhu ◽  
Ran Feng ◽  

<p>The early Eocene greenhouse represents the warmest interval of the Cenozoic and therefore provides a unique opportunity to understand how the climate system operates under elevated atmospheric CO<sub>2</sub> levels similar to those projected for the end of the 21st century. Early Eocene geological records indicate a large increase in global mean surface temperatures compared to present day (by ~14°C) and a greatly reduced meridional temperature gradient (by ~30% in SST). However, reproducing these large-scale climate features at reasonable CO<sub>2</sub> levels still poses a challenge for current climate models. Recent modelling studies indicate an important role for shortwave (SW) cloud feedbacks to drive increases in climate sensitivity with global warming, which helps to close the gap between simulated and reconstructed Eocene global warmth and temperature gradient. Nevertheless, the presence of such state-dependent feedbacks and their relative strengths in other models remain unclear.</p><p>In this study, we perform a systematic investigation of the simulated surface warming and the underlying mechanisms in the recently published DeepMIP ensemble. The DeepMIP early Eocene simulations use identical paleogeographic boundary conditions and include six models with suitable output: CESM1.2_CAM5, GFDL_CM2.1, HadCM3B_M2.1aN, IPSLCM5A2, MIROC4m and NorESM1_F. We advance previous energy balance analysis by applying the approximate partial radiative perturbation (APRP) technique to quantify the individual contributions of surface albedo, cloud and non-cloud atmospheric changes to the simulated Eocene top-of-the-atmosphere SW flux anomalies. We further compare the strength of these planetary albedo feedbacks to changes in the longwave atmospheric emissivity and meridional heat transport in the warm Eocene climate. Particular focus lies in the sensitivity of the feedback strengths to increasing global mean temperatures in experiments at a range of atmospheric CO<sub>2</sub> concentrations between x1 to x9 preindustrial levels.</p><p>Preliminary results indicate that all models that provide data for at least 3 different CO<sub>2</sub> levels show an increase of the equilibrium climate sensitivity at higher global mean temperatures. This is associated with an increase of the overall strength of the positive SW cloud feedback with warming in those models. This nonlinear behavior seems to be related to both a reduction and optical thinning of low-level clouds, albeit with intermodel differences in the relative importance of the two mechanisms. We further show that our new APRP results can differ significantly from previous estimates based on cloud radiative forcing alone, especially in high-latitude areas with large surface albedo changes. We also find large intermodel variability and state-dependence in meridional heat transport modulated by changes in the atmospheric latent heat transport. Ongoing work focuses on the spatial patterns of the climate feedbacks and the implications for the simulated meridional temperature gradients.</p>


2018 ◽  
Vol 45 (9) ◽  
pp. 4438-4445 ◽  
Author(s):  
Tianle Yuan ◽  
Lazaros Oreopoulos ◽  
Steven E. Platnick ◽  
Kerry Meyer

2019 ◽  
Vol 12 (7) ◽  
pp. 2727-2765 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Tomoo Ogura ◽  
Tomoko Nitta ◽  
Yoshiki Komuro ◽  
Koji Ogochi ◽  
...  

Abstract. The sixth version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC6, was cooperatively developed by a Japanese modeling community. In the present paper, simulated mean climate, internal climate variability, and climate sensitivity in MIROC6 are evaluated and briefly summarized in comparison with the previous version of our climate model (MIROC5) and observations. The results show that the overall reproducibility of mean climate and internal climate variability in MIROC6 is better than that in MIROC5. The tropical climate systems (e.g., summertime precipitation in the western Pacific and the eastward-propagating Madden–Julian oscillation) and the midlatitude atmospheric circulation (e.g., the westerlies, the polar night jet, and troposphere–stratosphere interactions) are significantly improved in MIROC6. These improvements can be attributed to the newly implemented parameterization for shallow convective processes and to the inclusion of the stratosphere. While there are significant differences in climates and variabilities between the two models, the effective climate sensitivity of 2.6 K remains the same because the differences in radiative forcing and climate feedback tend to offset each other. With an aim towards contributing to the sixth phase of the Coupled Model Intercomparison Project, designated simulations tackling a wide range of climate science issues, as well as seasonal to decadal climate predictions and future climate projections, are currently ongoing using MIROC6.


2007 ◽  
Vol 20 (11) ◽  
pp. 2602-2622 ◽  
Author(s):  
Ping Zhu ◽  
James J. Hack ◽  
Jeffrey T. Kiehl

Abstract In this study, it is shown that the NCAR and GFDL GCMs exhibit a marked difference in climate sensitivity of clouds and radiative fluxes in response to doubled CO2 and ±2-K SST perturbations. The GFDL model predicted a substantial decrease in cloud amount and an increase in cloud condensate in the warmer climate, but produced a much weaker change in net cloud radiative forcing (CRF) than the NCAR model. Using a multiple linear regression (MLR) method, the full-sky radiative flux change at the top of the atmosphere was successfully decomposed into individual components associated with the clear sky and different types of clouds. The authors specifically examined the cloud feedbacks due to the cloud amount and cloud condensate changes involving low, mid-, and high clouds between 60°S and 60°N. It was found that the NCAR and GFDL models predicted the same sign of individual longwave and shortwave feedbacks resulting from the change in cloud amount and cloud condensate for all three types of clouds (low, mid, and high) despite the different cloud and radiation schemes used in the models. However, since the individual longwave and shortwave feedbacks resulting from the change in cloud amount and cloud condensate generally have the opposite signs, the net cloud feedback is a subtle residual of all. Strong cancellations between individual cloud feedbacks may result in a weak net cloud feedback. This result is consistent with the findings of the previous studies, which used different approaches to diagnose cloud feedbacks. This study indicates that the proposed MLR approach provides an easy way to efficiently expose the similarity and discrepancy of individual cloud feedback processes between GCMs, which are hidden in the total cloud feedback measured by CRF. Most importantly, this method has the potential to be applied to satellite measurements. Thus, it may serve as a reliable and efficient method to investigate cloud feedback mechanisms on short-term scales by comparing simulations with available observations, which may provide a useful way to identify the cause for the wide spread of cloud feedbacks in GCMs.


2013 ◽  
Vol 26 (11) ◽  
pp. 3544-3561 ◽  
Author(s):  
A. Gettelman ◽  
J. E. Kay ◽  
J. T. Fasullo

Abstract An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.


2014 ◽  
Vol 27 (13) ◽  
pp. 5119-5131 ◽  
Author(s):  
Katinka Bellomo ◽  
Amy Clement ◽  
Thorsten Mauritsen ◽  
Gaby Rädel ◽  
Bjorn Stevens

This study examines the influence of the northeast and southeast Pacific subtropical stratocumulus cloud regions on the modes of Pacific climate variability simulated by an atmospheric general circulation model (ECHAM6) coupled to a slab ocean. The sensitivity of cloud liquid water to underlying SST is changed in the radiation module of the atmospheric model to increase the strength of positive low-cloud feedback in the two regions. Enhanced low-cloud feedback increases the persistence and variance of the leading modes of climate variability at decadal and longer time scales. Additional integrations show that the southeast Pacific influences climate variability in the equatorial ENSO region, whereas the effects of the northeast Pacific remain confined to the North Pacific. The results herein suggest that a positive feedback among SST, cloud cover, and large-scale atmospheric circulation can explain decadal climate variability in the Pacific Ocean. In particular, cloud feedbacks over the subtropical stratocumulus regions set the time scale of climate variability. A proper representation of low-level cloud feedbacks in the subtropical stratocumulus regions could therefore improve the simulation of Pacific climate variability.


2005 ◽  
Vol 18 (22) ◽  
pp. 4637-4648 ◽  
Author(s):  
Melanie F. Fitzpatrick ◽  
Stephen G. Warren

Abstract Downward solar irradiance at the sea surface, measured on several voyages of an icebreaker in the Southern Ocean, is used to infer transmittance of solar radiation by clouds. Together with surface albedo estimated from coincident hourly sea ice reports, instantaneous cloud radiative forcing and effective cloud optical depth are obtained. Values of “raw cloud transmittance” (trc), the ratio of downward irradiance under cloud to downward irradiance measured under clear sky, vary from 0.1 to 1.0. Over sea ice, few values of trc were observed between 0.8 and 1.0, possibly due to the threshold nature of the aerosol-to-cloud-droplet transition. This sparsely populated region of transmittances is referred to as the Köhler gap. The instantaneous downward shortwave cloud radiative forcing is computed, as well as the time-averaged net forcing. The net forcing at a solar zenith angle of 60° is typically −250 W m−2 over open ocean, but only half this value over sea ice because of the higher surface albedo and less frequent occurrence of clouds. “Effective” optical depths τ (for a radiatively equivalent horizontally homogeneous cloud) are classified by season and surface type. The frequency distributions of τ are well fitted by decaying exponentials, giving a characteristic optical depth of 15 at 47°S, increasing to 24 in the region of maximum cloud cover at 58°S, and decreasing to 11 at 67°S near the coast of Antarctica.


Sign in / Sign up

Export Citation Format

Share Document