rock bolt support
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 3)

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xinxin Guo ◽  
Bo Wang ◽  
Zhenyu Wang ◽  
Wei Yu ◽  
Zhenwang Ma ◽  
...  

The force-measuring rock bolt instrumented with bare fiber Bragg grating (FBG) sensors are generally factory-fabricated. To enable users to fabricate a force-measuring rock bolt by themselves, the microclamped FBG sensor is proposed to replace the encapsulated bare FBG sensor. A theoretical formula of strain sensitivity is also established. The strain sensibility measured by indoor calibration is consistent with the theoretical one, indicating that the microclamped FBG sensor can measure strain accurately. Besides, the measured strain sensibility coefficient (wavelength difference/strain) matches the theoretical values, making the installed microclamped sensor free from the need for recalibration and proving the installation method to be reliable. Also, the test sensitivity can be adjusted as needed. The instrumented rock bolt with microclamped FBG sensors shows great mechanical performance in the field test, awaiting further usage in applications.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2998 ◽  
Author(s):  
Krzysztof Skrzypkowski

The article presents the impact of geological and mining factors on the stability of room excavations in the Legnica-Głogów Copper District (LGOM) in Poland. In underground mining, the primary task of bolting of mining excavations is to ensure their stability as an essential condition of work safety. Appreciating the role and importance of the rock bolting in Polish ore mining; rock bolt load sensors were designed, manufactured and tested under laboratory conditions. The purpose of the research was to characterize the sensors and determine the elastic range of the bearing plate, which are an integral part of the sensor. The sensors have been verified in industrial conditions. The tests were carried out in the underground copper ore mine in Poland. Three rooms in the exploitation field were selected for testing, where exploitation was carried out at a depth of 809–820 m below the ground surface with the application of room and pillar with roof deflection and maintaining the central part of the field. The exploitation field included 60 rooms and pillars. The effectiveness of the mechanical load sensor of the expansion rock bolt support has been experimentally confirmed. Based on mine research, it was found that the largest increases in the load of the rock bolting, vertical stress and convergence occur in the middle of the mining field.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2082 ◽  
Author(s):  
Krzysztof Skrzypkowski ◽  
Waldemar Korzeniowski ◽  
Krzysztof Zagórski ◽  
Anna Zagórska

The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical program, five room and pillar widths were modeled. The main aim of numerical modeling was to determine the maximal range of the rock damage area and the total displacements in the expanded room. The models were made for a room and pillar method with a roof sag for copper ore deposits in the Legnica-Głogów Copper District in Poland. Additionally, in the article a load model of the rock bolt support as a result of a geomechanical seismic event is presented. Based on the results of laboratory tests (load–displacement characteristics), the strain energy of the bolt support equipped with the yielding device in the form of dome bearing plates was determined and compared with the impact energy caused by predicted falling rock layers. Based on the laboratory tests, numerical modeling and mathematical dynamic model of rock bolt support, the dependence of the drop height and the corresponding impact energy for the expanded room was determined.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1868 ◽  
Author(s):  
Krzysztof Skrzypkowski ◽  
Waldemar Korzeniowski ◽  
Krzysztof Zagórski ◽  
Anna Zagórska

The article presents methods of making the rock bolt support more yieldable, especially for a stratified roof. Alongside the increasing depth of exploitation of raw material deposits, rock bolt support units are more often designed taking into account more intensive deformations and displacements of underground excavations. In the article, a room and pillar method with mined roof bending and roof reinforcement with bolt patterns of 1 m × 1 m, 1.5 m × 1.5 m and 2 m × 2 m is presented. Moreover, the laboratory tests included 1.8 m long bolts, which were embedded segmentally on the lengths of 100 mm, 150 mm and 200 mm were tested. Based on the load–displacement characteristics, the deformation energy for flat and profiled dome bearing plates was calculated. Making the segmentally embedded resin rock bolt support yieldable enabled it to perform additional work. Furthermore, it was found that rock bolt support with a dome bearing plate took over 2.5 times more energy compared to a rock bolt support equipped with a flat bearing plate.


Author(s):  
D.I. Blokhin ◽  
I.M. Zakorshmennyi ◽  
S.S. Kubrin ◽  
I.L. Kharitonov ◽  
M.L. Kholmyansky

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4770 ◽  
Author(s):  
Krzysztof Skrzypkowski

In this article, a model of ore deposit in form of a lense carried out in the MineScape program, is presented. The lense had a thickness of 30 m, length along the strike 200 m, and the depth buried was for 80 m to 110 m below the surface. In the first layer, counting from the lowest level, a room and pillar method with variable geometry was designed. The width and length dimensions for rooms and pillars were: 4 m, 5 m and 6 m, respectively. For the selected part of the deposit, three variants of the system with variable geometry of rooms and pillars were designed, for which the deposit utilization coefficient was determined. The next stage of the research was to determine the influence of the geometry of the pillars and rooms on the range of the rock destruction zone around room excavations. For this purpose, numerical calculations using the three-dimensional Examine 3D program, based on the boundary element method, were made. The results of numerical tests were used to calculate the load of the rock bolt support, which is currently used in the zinc and lead underground mine “Olkusz-Pomorzany” in Poland. Currently in the mine, the bolt spacing is 1 m × 1 m, and the technology for fixing the bolt rod is based on resin cartridges that completely fill the bolt hole. In order to spread the spacing of the rock bolt support and to apply segmental fixing of the bolt rod, in the laboratory tests, rock bolt supports with increased strength were tested. Based on the results obtained, it was found that the rock bolt can be installed segmentally, using a cement grout, and its spacing can be increased to 2 m.


2019 ◽  
Vol 41 (2) ◽  
pp. 81-92 ◽  
Author(s):  
Andrzej Pytlik

AbstractAt present, the suspended monorail systems constitute a very common means of transportation in the Polish hard coal mines. The main advantages of the suspended monorail include the independence of the route from the working floor surface irregularities and the possibility to transport cargo of significant mass and size.The masses and dimensions of machines and devices transported via monorail have increased considerably in recent times. This particularly concerns the transport of longwall system elements. In Poland, the maximum speed of suspended monorail travel is 2 m/s. Due to the fact that preparations are currently underway to increase the maximum speed above 2 m/s, it is necessary to inspect what influence it will have on work safety and mining support stability.Current operational experience and tests have shown that dynamic loads induced by the suspended monorail transportation have a significant influence on the roadway support stability, working protection durability and on the monorail operators. This is particularly true during the emergency braking of a suspended monorail by means of a braking trolley, where the overloads reach 3g.Bench tests of the selected steel arch and rock bolt support elements utilised in the Polish hard coal mines were conducted in order to determine the resistance of steel arch and rock bolt supports to static and dynamic loads.The article presents the results of the tests conducted on a steel arch support in the form of the sliding joints of an ŁP/V29 yielding roadway support, which is commonly employed in the Polish hard coal mines. Tests of elements of the threaded bolts with trapezoidal threads over the entire rod length were conducted as well.The conducted strength tests of steel arch and rock bolt support elements under static and dynamic loading have shown that dynamic loading has decisive influence on the support’s retaining of its stability. Support element stability decreases along with the increase of the impact velocity. This concerns both the steel arch support and the rock bolt support.


2019 ◽  
Vol 105 ◽  
pp. 01007
Author(s):  
Witold Pytel ◽  
Krzysztof Fuławka ◽  
Piotr Mertuszka

One of the most serious hazard in the underground copper mining in Poland is the roof fall hazard. The scale and intensity of this type of events depends on several factors. Due to seismic activity, weaker roof strata can loosen and deform, generating additional load on the rock bolt support. The type of load depends strictly on the course of stratum deformation as well as on the intensity of the dynamic effect in the form of a seismic wave. Continuous monitoring is then necessary to determine the risk level of stability loss within existing excavations in order to minimize the probability of serious accidents. The following study analyses the impact of tremors recorded within the near-wave field upon the stress change in the instrumented rock bolts.


2018 ◽  
Vol 35 ◽  
pp. 01006 ◽  
Author(s):  
Krzysztof Skrzypkowski

The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead “Olkusz – Pomorzany” mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt “Olkusz – 20A” is able to overcome the load.The second purpose of the study was to obtain load – displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.


Sign in / Sign up

Export Citation Format

Share Document