Modeling interaction of suspended monorail rock bolt support and rock mass

Author(s):  
D.I. Blokhin ◽  
I.M. Zakorshmennyi ◽  
S.S. Kubrin ◽  
I.L. Kharitonov ◽  
M.L. Kholmyansky
2015 ◽  
Vol 60 (1) ◽  
pp. 209-224 ◽  
Author(s):  
Waldemar Korzeniowski ◽  
Krzysztof Skrzypkowski ◽  
Łukasz Herezy

Abstract Rock bolts have long been used in Poland, above all in the ore mining. Worldwide experience (Australia, Chile, Canada, South Africa, Sweden, and USA) provides evidence of rock bolt supports being used for loads under both static and dynamic conditions. There are new construction designs dedicated to the more extreme operating conditions, particularly in mining but also in tunneling. Appreciating the role and significance of the rock bolt support and its use in Polish conditions amounting to millions of units per year, this article describes a new laboratory test facility which enables rock bolt testing under static load conditions. Measuring equipment used as well as the possibilities of the test facility were characterized. Tests were conducted on expansion rock bolt supports installed inside a block simulating rock mass with compression strength of 80 MPa, which was loaded statically as determined by taking account of the load in order to maintain the desired axial tension, which was statically burdened in accordance with determined program load taking into consideration the maintenance of set axial tension strength at specified time intervals until capacity was exceeded. As an experiment the stress-strain characteristics of the rock bolt support were removed showing detailed dependence between its geometrical parameters as well as actual rock bolt deformation and its percentage share in total displacement and deformation resulting from the deformation of the bolt support elements (washer, thread). Two characteristic exchange parts with varying intensity of deformation /displacement per unit were highlighted with an increase in axial force static rock bolt supports installed in the rock mass.


2018 ◽  
Vol 71 ◽  
pp. 00006 ◽  
Author(s):  
Krzysztof Skrzypkowski

The article presents the basic methods of strengthening room and roadway excavations in underground ore mining. In particular, it was pointed out that the mining support is very often exposed to additional dynamic loads resulting from the mining of the deposit by means of explosives (slight) as well as from the load arising from rock mass tremors. In the article a new design of arch yielding support adapted to dynamic loads, which can be used in long-term access excavations was proposed. For this case, an exemplary spring deflection, which is located in the support foot cylinder, based on the principle of work and energy was calculated. In the case of exploitation room excavations, laboratory tensile tests of the long expansion rock bolt support, which were carried out in the rock bolting laboratory at the Department of Underground Mining AGH were presented. Load-displacement characteristics for long expansion rock bolt support with a particular indication of the elastic and plastic range were presented. In the summary, it was concluded that with the increase in the depth of exploitation, safe and efficient mining will be possible only due to the use of a support with appropriate yielding.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2998 ◽  
Author(s):  
Krzysztof Skrzypkowski

The article presents the impact of geological and mining factors on the stability of room excavations in the Legnica-Głogów Copper District (LGOM) in Poland. In underground mining, the primary task of bolting of mining excavations is to ensure their stability as an essential condition of work safety. Appreciating the role and importance of the rock bolting in Polish ore mining; rock bolt load sensors were designed, manufactured and tested under laboratory conditions. The purpose of the research was to characterize the sensors and determine the elastic range of the bearing plate, which are an integral part of the sensor. The sensors have been verified in industrial conditions. The tests were carried out in the underground copper ore mine in Poland. Three rooms in the exploitation field were selected for testing, where exploitation was carried out at a depth of 809–820 m below the ground surface with the application of room and pillar with roof deflection and maintaining the central part of the field. The exploitation field included 60 rooms and pillars. The effectiveness of the mechanical load sensor of the expansion rock bolt support has been experimentally confirmed. Based on mine research, it was found that the largest increases in the load of the rock bolting, vertical stress and convergence occur in the middle of the mining field.


2019 ◽  
Vol 105 ◽  
pp. 01007
Author(s):  
Witold Pytel ◽  
Krzysztof Fuławka ◽  
Piotr Mertuszka

One of the most serious hazard in the underground copper mining in Poland is the roof fall hazard. The scale and intensity of this type of events depends on several factors. Due to seismic activity, weaker roof strata can loosen and deform, generating additional load on the rock bolt support. The type of load depends strictly on the course of stratum deformation as well as on the intensity of the dynamic effect in the form of a seismic wave. Continuous monitoring is then necessary to determine the risk level of stability loss within existing excavations in order to minimize the probability of serious accidents. The following study analyses the impact of tremors recorded within the near-wave field upon the stress change in the instrumented rock bolts.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2082 ◽  
Author(s):  
Krzysztof Skrzypkowski ◽  
Waldemar Korzeniowski ◽  
Krzysztof Zagórski ◽  
Anna Zagórska

The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical program, five room and pillar widths were modeled. The main aim of numerical modeling was to determine the maximal range of the rock damage area and the total displacements in the expanded room. The models were made for a room and pillar method with a roof sag for copper ore deposits in the Legnica-Głogów Copper District in Poland. Additionally, in the article a load model of the rock bolt support as a result of a geomechanical seismic event is presented. Based on the results of laboratory tests (load–displacement characteristics), the strain energy of the bolt support equipped with the yielding device in the form of dome bearing plates was determined and compared with the impact energy caused by predicted falling rock layers. Based on the laboratory tests, numerical modeling and mathematical dynamic model of rock bolt support, the dependence of the drop height and the corresponding impact energy for the expanded room was determined.


2013 ◽  
Vol 448-453 ◽  
pp. 3799-3802
Author(s):  
Feng Shan Han ◽  
Xin Li Wu

The artificial neural network has been widely used in various field of science and engineering. The artificial neural network has marvelous ability to gain knowledge. In this paper, according to principle of artificial neural network , Model of artificial neural network of rock bolt support of roadway of coal mine has been constructed,Learning system of BP artificial neural network has been trained,it is shown by engineering application that artificial neural network can handle imperfect or incomplete data and it can capture nonlinear and complex relationships among variables of a system. the artificial neural network is emerging as a powerful tool for modeling with the complex system. Method and parameters of rock bolt support of roadway of coal mine can be predicated accurately using artificial neural network, that is of significance and valuable to those subjects of investigation and design of mining engineering


2017 ◽  
Vol 53 (3) ◽  
pp. 513-518 ◽  
Author(s):  
R. A. Ignat’ev ◽  
E. R. Ignat’ev

2017 ◽  
Vol 39 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Waldemar Korzeniowski ◽  
Krzysztof Skrzypkowski ◽  
Krzysztof Zagórski

AbstractThe basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread) and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod). There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1868 ◽  
Author(s):  
Krzysztof Skrzypkowski ◽  
Waldemar Korzeniowski ◽  
Krzysztof Zagórski ◽  
Anna Zagórska

The article presents methods of making the rock bolt support more yieldable, especially for a stratified roof. Alongside the increasing depth of exploitation of raw material deposits, rock bolt support units are more often designed taking into account more intensive deformations and displacements of underground excavations. In the article, a room and pillar method with mined roof bending and roof reinforcement with bolt patterns of 1 m × 1 m, 1.5 m × 1.5 m and 2 m × 2 m is presented. Moreover, the laboratory tests included 1.8 m long bolts, which were embedded segmentally on the lengths of 100 mm, 150 mm and 200 mm were tested. Based on the load–displacement characteristics, the deformation energy for flat and profiled dome bearing plates was calculated. Making the segmentally embedded resin rock bolt support yieldable enabled it to perform additional work. Furthermore, it was found that rock bolt support with a dome bearing plate took over 2.5 times more energy compared to a rock bolt support equipped with a flat bearing plate.


Sign in / Sign up

Export Citation Format

Share Document