scholarly journals Spatiotemporal Rates of Tectonic Deformation and Landscape Evolution above a Laterally Propagating Thrust Fault: Wheeler Ridge Anticline, California, USA

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Emily J. Kleber ◽  
Duane E. DeVecchio ◽  
J. Ramón Arrowsmith ◽  
Tammy M. Rittenour

Abstract The Wheeler Ridge anticline, located in the southern San Joaquin Valley of California, USA, is a well-studied and classic example of a laterally growing fault propagation fold. New high-resolution lidar elevation data combined with nine infrared stimulated luminescence (IRSL) ages of discrete geomorphic surfaces that are bounded by prominent transverse wind and river gaps allow for investigation of tectonic topography through time. Luminescence ages from four of the six surfaces yield depositional ages that range from 32 ka to 153 ka, which are broadly consistent with a previously published soil chronosequence. Our graphical modeling indicates an average surface uplift rate of ~2.1 mm/yr and an average along-strike fold propagation rate of ~20 mm/yr. However, our probabilistic modelling and topographic analysis suggest a rate decrease of both uplift and lateral propagation toward the fault tip from ~2.4 to 0.7 mm/yr and from ~49 to 14 mm/yr, respectively. Rate decreases are not progressive but rather occur in punctuated deformational intervals across previously documented structural barriers (tear faults) resulting in a fold that is characterized by discrete segments that exhibit a systematic deformational decrease toward the east. The punctuated tectonic growth of Wheeler Ridge has also locally controlled the topographic evolution of the anticline by effecting the formational timing and position of at least seven wind and river gaps that result from multiple north-flowing antecedent streams that traverse the growing structure. We quantify the timing of wind and river gap formation, based on IRSL results and inferred incision rates, and present a model for the spatiotemporal evolution of transverse drainages and the topographic development of Wheeler Ridge. Our chronology of gap formation broadly correlates with regional Late Pleistocene dry climate intervals suggesting that both tectonics and climate were integral to the geomorphic development of the Wheeler Ridge anticline.

2021 ◽  
Author(s):  
Nicolas Perez-Consuegra ◽  
Richard Ott ◽  
Gregory D. Hoke ◽  
Jorge Pedro Galve ◽  
Jose Vicente Pérez–Peña

<p>The tropical Northern Andes of Colombia are one the world's most biodiverse places, offering an ideal location for unraveling the linkages between the geodynamic forces that build topography and the evolution of the biota that inhabit it. In this study, we utilize a geomorphic analysis to characterize the topography of the Western and Central Cordilleras of the Northern Andes. We supplement our topographic analysis with erosion rate estimates based on gauged suspended sediment loads and river incision rates from volcanic sequences. In the northern segment of the Central Cordillera, an elevated low-relief surface (2,500m in elevation, ~40x110 km in size) with uniform lithology and surrounded by knickpoints, indicates a recent increase in rock and surface uplift rate. Whereas, the southern segment of the Central Cordillera shows substantially higher local relief and mostly well graded river profiles consistent with longer term uplift stability. These changes in the topography fit with the proposed location of a slab tear and flat slab subduction under the northern Central Cordillera, as well as with a major transition in the channel slope of the Cauca River. We identify several areas of major drainage reorganization, including captures and divide migrations that are supported by our erosion and incision rate estimates. We identify slab flattening as the most likely cause of strong and recent uplift in the Northern Andes leading to ~2 km of surface uplift since 8–4 Ma. Large scale drainage reorganization of major rivers is probably mainly driven by changes in upper plate deformation in relation to development of the flat slab subduction geometry; however, other factors such as climate and emplacement of volcanic rocks likely play secondary roles in this process. Several isolated biologic observations above the area of slab flattening suggest that surface uplift isolated former lowland species on the high elevation plateaus, and drainage reorganization may have driven diversification of aquatic species.</p>


2020 ◽  
Vol 12 (21) ◽  
pp. 3492
Author(s):  
Javier Elez ◽  
Pablo G. Silva ◽  
Antonio M. Martínez-Graña

The present study deals with the morphometric quantification of erosion and illustrates the uplift component triggered by denudation (isostasy) in the growth and evolution of a rising orogeny by the application of Airy isostasy concepts. The Gibraltar Arc, located in the Western–Central sector of the Betic Cordillera, developed an exceptional geological scenario during the Messinian Salinity Crisis since the thin emerged fringe of the uprising Cordillera disconnected the Atlantic and Mediterranean basins, generating a relevant misbalance and asymmetry in the fluvial erosion between the two slopes of the emergent orogeny. Our analysis was applied to 50 individual drainage basins (spatial isostatic units) in the Western–Central Betic Cordillera, allowing us to obtain individual and bulk estimates for these isostatic parameters. GIS-based numerical estimations were obtained using LiDAR Digital Elevation Models (DEMs) provided by the Spanish Geographical Institute and reconstructed pre-incision surface models obtained from proxy paleo-elevation data, estimated from stratigraphic and geomorphological littoral to shallow marine markers. The obtained values for geophysical relief, denudation plates, erosion/uplift rates and computed accumulated uplift (245–407 ±20 m) are higher for the ancient Mediterranean slope of the orogen. On the contrary, the Atlantic slope presents an accumulated uplift of only 138–236 ±20 m, indicating the strong control of the ancient Messinian Atlantic–Mediterranean water divide. The temporal study of erosion indicates that most of the difference in uplift in the Mediterranean slope was achieved during or soon after the Messinian Salinity Crisis, resulting in mean uplift rates of 0.21 mm/y, but practically null (0.01 mm/y) for the Atlantic slope. The comparison of the geophysical relief models with proxy paleo-elevation data allowed us to assess the current state of the denudation process in the range. The results indicate that, towards the west of the range denudation compensated elevation, and is actively back-feeding isostatic rebound. Therefore, the contribution of external processes to mountain range elevation through isostasy is quantitatively estimated using elevation data. In this case, a relevant part of the surface uplift (50-55%) is undertaken by the orogen. Ultimately, the Messinian Salinity Crisis-related isostatic response to differential denudation may be behind the quaternary westward tilting of Iberia, causing more than 70% of the Peninsula to drain towards the Atlantic.


2011 ◽  
Vol 62 (3) ◽  
pp. 279-295 ◽  
Author(s):  
Melanie Keil ◽  
Franz Neubauer

Neotectonics, drainage pattern and geomorphology of the orogen-parallel Upper Enns Valley (Eastern Alps)The geomorphology and neotectonics of the Upper Enns Valley (Austria) in the Eastern Alps reveal the formation of a fault-controlled orogen-parallel valley. In the study area, the Eastern Alps have been under surface uplift since Early Miocene times. Quaternary processes such as uplift and cyclic glaciations likely interfere with neotectonic activity as the Upper Enns Valley follows the Salzach-Enns-Mariazell-Puchberg (SEMP) fault. The geomorphologically different landscapes comprise three main tectonic units: (1) the Austroalpine crystalline basement exposed in the Niedere Tauern, (2) the Austroalpine Paleozoic units (Greywacke Zone) and (3) the Dachstein Plateau dominated by Triassic carbonate successions. The Upper Pleistocene Ramsau Conglomerate overlying the Greywacke Zone on the northern slope of the Upper Enns Valley is a crucial element to reconstruct the evolution of the valley. A new14C date (uncalibrated) indicates an age older than 53,300 years, outside of the analytical limit of the methods. Provenance analysis of the Ramsau Conglomerate shows the Niedere Tauern as a source region and consequently a post-early Late Pleistocene dissection of the landscape by the Upper Enns Valley. Paleosurfaces at elevations of about 1100 m on the northern and southern slopes of the Upper Enns Valley allow us to estimate surface uplift/incision of about 2.5 mm/yr. Regularly oriented outcrop-scale faults and joints of the Ramsau Conglomerate document Pleistocene to Holocene tectonic deformation, which is consistent with ongoing seismicity. Paleostress tensors deduced from slickensides and striae of pre-Cenozoic basement rocks indicate two stages of Late Cretaceous to Paleogene deformation independent of the SEMP fault; the Oligocene-Neogene evolution comprises NW-SE strike-slip compression followed by E-W compression and Late Pleistocene ca. E-W extension, the latter recorded in the Ramsau Conglomerate.


Author(s):  
Qihong Wu ◽  
Yurong Ma ◽  
Lin Yu ◽  
Xinhai Han ◽  
Guanzhong Wang ◽  
...  

2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


2018 ◽  
Author(s):  
David Fernández-Blanco

Orogenic plateaus have raised abundant attention amongst geoscientists during the last decades, offering unique opportunities to better understand the relationships between tectonics and climate, and their expression on the Earth’s surface.Orogenic plateau margins are key areas for understanding the mechanisms behind plateau (de)formation. Plateau margins are transitional areas between domains with contrasting relief and characteristics; the roughly flat elevated plateau interior, often with internally drained endorheic basins, and the external steep areas, deeply incised by high-discharge rivers. This thesis uses a wide range of structural and tectonic approaches to investigate the evolution of the southern margin of the Central Anatolian Plateau (CAP), studying an area between the plateau interior and the Cyprus arc. Several findings are presented here that constrain the evolution, timing and possible causes behind the development of this area, and thus that of the CAP. After peneplanation of the regional orogeny, abroad regional subsidence took place in Miocene times in the absence of major extensional faults, which led to the formation of a large basin in the northeast Mediterranean. Late Tortonian and younger contractional structures developed in the interior of the plateau, in its margin and offshore, and forced the inversion tectonics that fragmented the early Miocene basin into the different present-day domains. The tectonic evolution of the southern margin of the CAP can be explained based on the initiation of subduction in south Cyprus and subsequent thermo-mechanical behavior of this subduction zone and the evolving rheology of the Anatolian plate. The Cyprus slab retreat and posterior pull drove subsidence first by relatively minor stretching of the crust and then by its flexure. The growth by accretion and thickening of the upper plate, and that of the associated forearc basins system, caused by accreting sediments, led to rheological changes at the base of the crust that allowed thermal weakening, viscous deformation, driving subsequent surface uplift and raising the modern Taurus Mountains. This mechanism could be responsible for the uplifted plateau-like areas seen in other accretionary margins. ISBN: 978-90-9028673-0


Sign in / Sign up

Export Citation Format

Share Document