physiologically equivalent temperature
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Biljana Basarin ◽  
Tin Lukić ◽  
Tanja Micić Ponjiger

<p>A detailed analysis of extreme heatwave events in Serbia from the biometeorological point of view is presented in this study.  For this purpose, the newly developed Heat Wave Magnitude Index daily (HWMId), was used on Physiologically equivalent temperature (PET) for Serbia. A series of daily maximum air temperature, relative humidity, the wind was used to calculate PET for the investigated period 1979–2019. HWMId is defined as the maximum magnitude of the heatwaves in a year. Here, the heatwave is characterized as 3 consecutive days with maximum PET above the daily threshold for the reference period 1981–2010. The analysis revealed that during the investigated period the most intensive heat waves occurred in 2007, 2012 and 2015. HWMId values for 2007 were in the range of 8 to 23 indicating extreme heat stress, while for the other two events the values were not as high. Hourly temperatures revealed that the PET values during the day were as high as 55°C. Thus, the mitigation and adaptation to extreme temperature events are of vital importance for humans and their everyday activities. Future investigation should be oriented towards a way to deal with the oppressive heat. Additionally, more research is needed in order to explain and predict these catastrophic events. The main focus of future activities will be on determining the physical causes which lead to the occurrence of extreme heatwaves.</p><p>Keywords: Heat Wave Magnitude Index daily, Physiologically equivalent temperature, Serbia, heat waves</p><p>Acknowledgment: This research is supported by <strong>EXtremeClimTwin</strong> project funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952384</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 694 ◽  
Author(s):  
Yung-Chang Chen ◽  
Wei-Nai Chen ◽  
Charles Chou ◽  
Andreas Matzarakis

Different kinds of thermal indices have been applied in several decades as essential tools to investigate thermal perception, environmentally thermal conditions, occupant thermal risk, public health, tourist attractiveness, and urban climate. Physiologically equivalent temperature (PET) has been proved as a relatively wide applicable thermal indicator above other thermal indices. However, the current practical PET performs a slight variation influenced by changing the humidity and clothing insulation. The improvement of the PET has potentiality for further multi-application as a general and consistent standard to estimate thermal perception and tolerance for different studies. To achieve the above purpose, modified physiologically equivalent temperature (mPET) is proposed as an appropriate indicator according to the new structure and requirements of the thermally environmental ergonomics. The modifications to formulate the mPET are considerably interpreted in the principle of the heat transfer inside body, thermo-physiological model, clothing model, and human-environmental interaction in this study. Specifically, the mPET-model has adopted a semi-steady-state approach to calculate an equivalent temperature refer to an indoor condition as the mPET. Finally, the sensitivity test of the biometeorological variables and clothing impact proves that the mPET has better performance on the humidity and clothing insulation than the original PET.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 444
Author(s):  
Yuting Wu ◽  
Kathrin Graw ◽  
Andreas Matzarakis

Weather and climate conditions can be decisive regarding travel plans or outdoor events, especially for sport events. The Olympic Games 2020, postponed to 2021, will take place in Tokyo at a time which is considered to be the hottest and most humid time of the year. However, a part of the athletic competitions is relocated to the northern city Sapporo. Therefore, it is important to quantify thermal comfort for different occasions and destinations and make the results accessible to visitors and sport attendees. The following analysis will quantify and compare thermal comfort and heat stress between Sapporo and Tokyo using thermal indices like the Physiologically Equivalent Temperature and the modified Physiologically Equivalent Temperature (PET and mPET). The results reveal different precipitation patterns for the cities. While a higher precipitation rate appears in Sapporo during winter, the precipitation rate is higher in Tokyo during summer. PET and mPET exhibit a greater probability of heat stress conditions in Tokyo during the Olympic Games, whereas Sapporo has more moderate values for the same period. The Climate-Tourism/Transfer-Information-Scheme (CTIS) integrates and simplifies climate information and makes them comprehensible for non-specialists. The CTIS of Tokyo illustrates lower suitable conditions for “Heat stress”, “Sunny days” and “Sultriness”. Transferring parts of the athletics competition to a northern city is thus more convenient for athletes, staff members and spectators. Hence, heat stress can be avoided and an acceptable outdoor stay is ensured. Overall, this quantification and comparison of the thermal conditions in Sapporo and Tokyo reveal limitations but also possibilities for the organizers of the Olympic Games. Furthermore it can be used to raise awareness for promoting or arranging countermeasures and heat mitigation at specific events and destinations, if necessary.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Salah Sahabi Abed ◽  
Andreas Matzarakis

The thermal conditions of the bioclimate of Algeria are investigated applying especially the physiologically equivalent temperature (PET) seasonal variability of five main Algerian cities representing different climate and geographical conditions: coastal region, highland region, and Sahara zone. The physiologically equivalent temperature (PET) calculated for this study at 12.00 UTC (13.00 local time) is used to emphasize the impacts of climate on human heat stress in different seasonal and regional regimes. This study is important since it is performed for the first time in Algeria using a deterministic approach through the calculation of PET based on the body-atmosphere energy balance using the Munich Energy-Balance Model for Individuals (MEMI). Applying PET is a new feature in assessing the bioclimate of Algeria and serves the touristic and the health sector in particular. For touristic purposes, it is part of the new internationally introduced climate touristic/transfer information scheme (CTIS) enabling the Algerian results to be paled in comparison to other countries. Considering climate change, the study shows as a new feature a significant increase in the number of days with strong and extreme heat stress within the last three decades and discusses the risks and advantages for future tourism in Algeria.


Sign in / Sign up

Export Citation Format

Share Document