behavioral castes
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Biplabendu Das ◽  
Charissa de Bekker

Abstract Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.


2021 ◽  
Author(s):  
Biplabendu Das ◽  
Charissa de Bekker

AbstractBackgroundCircadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. “Around-the-clock” active nurse ants are usually younger and, with age, transition into rhythmically active foragers. Moreover, ants can shift between these behavioral castes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains.ResultsWe found that nurse brains have three times fewer 24h oscillating genes than foragers. However, several hundred genes that oscillated every 24h in forager brains showed robust 8h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment pathway, and showed enrichments for functions related to metabolism, cellular communication and protein modification. We additionally found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24h oscillations in nurse brains but not in foragers. Furthermore, the protein products of several genes that were differentially expressed between the two ant castes were previously found in the trophallactic fluid of C. floridanus. This suggests a putative role for trophallaxis in regulating behavioral division of labor through caste-specific gene expression.ConclusionWe provide a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify putative molecular mechanisms underlying plastic timekeeping. Several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.


2019 ◽  
Vol 68 ◽  
pp. 85-101 ◽  
Author(s):  
Hussain Ali ◽  
Abdulaziz S. Alqarni ◽  
Javaid Iqbal ◽  
Ayman A. Owayss ◽  
Hael S. Raweh ◽  
...  

Honey production gains are needed to deal with high demand in Saudi Arabia. The honey bee races are facing stressful hot-arid weather conditions that can affect different aspects of physiology and behavior. The hypopharyngeal glands (HPGs) of honey bees have prominent roles in various social behaviors through their secretions. The measurement of acini size and lipofuscin accumulation indicates the changes in HPGs in response to different factors including weather and behavioral castes. This research aimed to reveal how natural harsh environment of summer and winter can shape the HPGs in foragers and nurses of an indigenous bee race (Apismelliferajemenitica Ruttner) in comparison with two exotic bee races (Apismelliferacarnica Pollmann and Apismelliferaligustica Spinola). This study presents new information of significant differences in the HPGs of two behavioral castes (nurses and foragers) of indigenous and exotic bee races under harsh natural environmental conditions. HPGs of foragers have significantly higher lipofuscin accumulation and smaller acini size than nurse bees in all tested races during summer and winter seasons. A strong inverse correlation was found between acini size and lipofuscin accumulation in each race in both seasons. Smaller acini size and lipofuscin accumulation were detected in the HPGs of indigenous bees (foragers and nurses) than exotic bee races during both seasons. The acini size and lipofuscin accumulation were similar between exotic bee races but higher than that of the indigenous bee race.


Author(s):  
Ricarda Scheiner ◽  
Brian V. Entler ◽  
Andrew B. Barron ◽  
Christina Scholl ◽  
Markus Thamm

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146430 ◽  
Author(s):  
Bruce R. Southey ◽  
Ping Zhu ◽  
Morgan K. Carr-Markell ◽  
Zhengzheng S. Liang ◽  
Amro Zayed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document