scholarly journals The Puzzling Fate of a Lupin Chromosome Revealed by Reciprocal Oligo-FISH and BAC-FISH Mapping

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1489
Author(s):  
Wojciech Bielski ◽  
Michał Książkiewicz ◽  
Denisa Šimoníková ◽  
Eva Hřibová ◽  
Karolina Susek ◽  
...  

Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.

Genome ◽  
2010 ◽  
Vol 53 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Ute C. Achenbach ◽  
Xiaomin Tang ◽  
Agim Ballvora ◽  
Hans de Jong ◽  
Christiane Gebhardt

Potato chromosome 5 harbours numerous genes for important qualitative and quantitative traits, such as resistance to the root cyst nematode Globodera pallida and the late blight fungus, Phytophthora infestans . The genes make up part of a “hot spot” for resistances to various pathogens covering a genetic map length of 3 cM between markers GP21 and GP179. We established the physical size and position of this region on chromosome 5 in potato and tomato using fluorescence in situ hybridization (FISH) on pachytene chromosomes. Five potato bacterial artificial chromosome (BAC) clones with the genetically anchored markers GP21, R1-contig (proximal end), CosA, GP179, and StPto were selected, labeled with different fluorophores, and hybridized in a five-colour FISH experiment. Our results showed the location of the BAC clones in the middle of the long arm of chromosome 5 in both potato and tomato. Based on chromosome measurements, we estimate the physical size of the GP21–GP179 interval at 0.85 Mb and 1.2 Mb in potato and tomato, respectively. The GP21–GP179 interval is part of a genome segment known to have inverted map positions between potato and tomato.


Genome ◽  
2013 ◽  
Vol 56 (4) ◽  
pp. 239-243 ◽  
Author(s):  
Elzbieta Wolny ◽  
Wojciech Fidyk ◽  
Robert Hasterok

Identification of individual chromosomes in a complement is usually a difficult task in the case of most plant species, especially for those with small, numerous, and morphologically uniform chromosomes. In this paper, we demonstrate that the landmarks produced by cross-species fluorescence in situ hybridisation (FISH) of Brachypodium distachyon derived bacterial artificial chromosome (BAC) clones can be used for discrimination of Brachypodium pinnatum (2n = 18) chromosomes. Selected sets of clones were hybridised in several sequential experiments performed on exactly the same chromosome spreads, using reprobing of cytological preparations. Analysis of the morphometric features of B. pinnatum chromosomes was performed to establish their total length, the position of centromeres, and the position of BAC-based landmarks in relation to the centromere, thereby enabling their effective karyotyping, which is a prerequisite for more complex study of the grass genome structure and evolution at the cytomolecular level.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


1994 ◽  
Vol 297 (3) ◽  
pp. 441-445 ◽  
Author(s):  
D Hickman ◽  
A Risch ◽  
V Buckle ◽  
N K Spurr ◽  
S J Jeremiah ◽  
...  

Arylamine N-acetyltransferase is encoded at two loci, AAC-1 and AAC-2, on human chromosome 8. The products of the two loci are able to catalyse N-acetylation of arylamine carcinogens, such as benzidine and other xenobiotics. AAC-2 is polymorphic and individuals carrying the slow-acetylator phenotype are more susceptible to benzidine-induced bladder cancer. We have identified yeast artificial chromosome clones encoding AAC-1 and AAC-2 and have used the cloned DNAs as fluorescent probes for in situ hybridization. The hybridization patterns allow assignment of AAC-1 and AAC-2 to chromosome 8p21.3-23.1, a region in which deletions have been associated with bladder cancer [Knowles, Shaw and Proctor (1993) Oncogene 8, 1357-1364].


2009 ◽  
Vol 55 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Ryohei Ueno

Fluorescent in situ hybridization (FISH) using taxon-specific, rRNA-targeted oligonucleotide probes is one of the most powerful tools for the rapid identification of harmful microorganisms. However, eukaryotic algal cells do not always allow FISH probes to permeate over their cell walls. Members of the pathogenic micro-algal genus Prototheca are characterized by their distinctive cell-wall component, sporopollenin, an extremely tough biopolymer that resists acid and alkaline hydrolysis, enzyme attack, and acetolysis. To our knowledge, there has been no report of the successful permeation by the oligonucleotide probes over the cell walls of unicellular green micro-algae, which contain sporopollenin. The DNA probes passed through the cell wall of Prototheca wickerhamii after treating the algal cells with cetyltrimethylammonium bromide (CTAB). Most cells in the middle logarithmic growth phase culture fluoresced when hybridized with the rRNA-targeted universal probe for eukaryotes, though individual cells included in this culture differed in the level of cell-wall vulnerability to attack by the polysaccharide-degrading enzyme, thus reflecting the different stages of the life cycle. This is the first report regarding the visualization of sporopollenin-containing, green micro-algal cells by FISH.


2002 ◽  
Vol 68 (8) ◽  
pp. 4035-4043 ◽  
Author(s):  
M. Lanthier ◽  
B. Tartakovsky ◽  
R. Villemur ◽  
G. DeLuca ◽  
S. R. Guiot

ABSTRACT Oligonucleotide probes were used to study the structure of anaerobic granular biofilm originating from a pentachlorophenol-fed upflow anaerobic sludge bed reactor augmented with Desulfitobacterium frappieri PCP-1. Fluorescence in situ hybridization demonstrated successful colonization of anaerobic granules by strain PCP-1. Scattered microcolonies of strain PCP-1 were detected on the biofilm surface after 3 weeks of reactor operation, and a dense outer layer of strain PCP-1 was observed after 9 weeks. Hybridization with probes specific for Eubacteria and Archaea probes showed that Eubacteria predominantly colonized the outer layer, while Archaea were observed in the granule interior. Mathematical simulations showed a distribution similar to that observed experimentally when using a specific growth rate of 2.2 day−1 and a low bacterial diffusion of 10−7 dm2 day−1. Also, the simulations showed that strain PCP-1 proliferation in the outer biofilm layer provided excellent protection of the biofilm from pentachlorophenol toxicity.


Sign in / Sign up

Export Citation Format

Share Document