scholarly journals Polyploidy Expands the Range of Centaurium (Gentianaceae)

2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Maguilla ◽  
Marcial Escudero ◽  
Vania Jiménez-Lobato ◽  
Zoila Díaz-Lifante ◽  
Cristina Andrés-Camacho ◽  
...  

The Mediterranean region is one of the most important worldwide hotspots in terms of number of species and endemism, and multiple hypotheses have been proposed to explain how diversification occurred in this area. The contribution of different traits to the diversification process has been evaluated in different groups of plants. In the case of Centaurium (Gentianaceae), a genus with a center of diversity placed in the Mediterranean region, polyploidy seems to have been an important driver of diversification as more than half of species are polyploids. Moreover, ploidy levels are strongly geographically structured across the range of the genus, with tetraploids distributed towards more temperate areas in the north and hexaploids in more arid areas towards the south. We hypothesize that the diversification processes and biodiversity patterns in Centaurium are explained by the coupled formation of polyploid lineages and the colonization of different areas. A MCC tree from BEAST2 based on three nuclear DNA regions of a total of 26 taxa (full sampling, of 18 species and 8 subspecies) was used to perform ancestral area reconstruction analysis in “BioGeoBEARS.” Chromosome evolution was analyzed in chromEvol and diversification in BAMM to estimate diversification rates. Our results suggest that two major clades diverged early from the common ancestor, one most likely in the western Mediterranean and the other in a widespread area including west and central Asia (but with high uncertainty in the exact composition of this widespread area). Most ancestral lineages in the western clade remained in or around the western Mediterranean, and dispersal to other areas (mainly northward and eastward), occurred at the tips. Contrarily, most ancestral lineages in the widespread clade had larger ancestral areas. Polyploidization events in the western clade occurred at the tips of the phylogeny (with one exception of a polyploidization event in a very shallow node) and were mainly tetraploid, while polyploidization events occurred in the widespread clade were at the tips and in an ancestral node of the phylogeny, and were mainly hexaploid. We show how ancestral diploid lineages remained in the area of origin, whereas recent and ancestral polyploidization could have facilitated colonization and establishment in other areas.

Author(s):  
Andrew Harding ◽  
Jean Palutikof

The Mediterranean region has a highly distinctive climate due to its position between 30 and 45°N to the west of the Euro-Asian landmass. With respect to the global atmospheric system, it lies between subtropical high pressure systems to the south, and westerly wind belts to the north. In winter, as these systems move equatorward, the Mediterranean basin lies under the influence of, and is exposed to, the westerly wind belt, and the weather is wet and mild. In the summer, as shown in Figure 3.1, the Mediterranean lies under subtropical high pressure systems, and conditions are hot and dry, with an absolute drought that may persist for more than two or three months in drier regions. Climates such as this are relatively rare, and the Mediterranean shares its winter wet/summer dry conditions with locations as distant as central Chile, the southern tip of Cape Province in South Africa, southwest Australia in the Southern Hemisphere, and central California in the Northern Hemisphere. All have in common their mid-latitude position, between subtropical high pressure systems and westerly wind belts. They all lie on the westerly side of continents so that, in winter, when the westerly wind belts dominate over their locations, they are exposed to rain-bearing winds. In the Köppen classification (Köppen 1936), these climates are known as Mediterranean (Type Cs, which is subdivided in turn into maritime Csb and continental Csa). The influence of the Mediterranean Sea means that the Mediterranean-type climate of the region extends much further into the continental landmass than elsewhere, and is not restricted to a narrow ocean-facing strip. Nevertheless, within the Mediterranean region climate is modified by position and topographic influences can be important. The proximity of the western Mediterranean to the Atlantic Ocean gives its climate a maritime flavour, with higher rainfall and milder temperatures throughout the year. The eastern Mediterranean lies closer to the truly continental influences of central Europe and Asia. Its climate is drier, and temperatures are hotter in summer and colder in winter than in the west. Annual rainfall is typically around 750 mm in Rome, but only around 400 mm in Athens.


2015 ◽  
Author(s):  
Jasmine Ferrario ◽  
Agnese Marchini ◽  
Martina Marić ◽  
Dan Minchin ◽  
Anna Occhipinti-Ambrogi

The Pacific cheilostome bryozoan Celleporaria brunnea (Hincks, 1884), a non-indigenous species already known for the Mediterranean Sea, was recorded in 2013-2014 from nine Italian port localities (Genoa, Santa Margherita Ligure, La Spezia, Leghorn, Viareggio, Olbia, Porto Rotondo, Porto Torres and Castelsardo) in the North-western Mediterranean Sea; in 2014 it was also found for the first time in the Adriatic Sea, in the marina “Kornati”, Biograd na Moru (Croatia). In Italy, specimens of C. brunnea were found in 44 out of 105 samples (48% from harbour sites ad 52% from marinas). These data confirm and update the distribution of C. brunnea in the Mediterranean Sea, and provide evidence that recreational boating is a vector responsible for the successful spread of this species. Previous literature data have shown the existence of differences in orifice and interzooidal avicularia length and width among different localities of the invaded range of C. brunnea. Therefore, measurements of orifice and avicularia were assessed for respectively 30 zooids and 8 to 30 interzooidal avicularia for both Italian and Croatian localities, and compared with literature data, in order to verify the existence of differences in the populations of C. brunnea that could reflect the geographic pattern of its invasion range. Our data show high variability of orifice measures among and within localities: zooids with broader than long orifice coexisted with others displaying longer than broad orifice, or similar values for both length and width. The morphological variation of C. brunnea in these localities, and above all the large variability of samples within single localities or even within colonies poses questions on the reliability of such morphometric characters for inter and intraspecific evaluations.


2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


2020 ◽  
Author(s):  
Carlo Brandini ◽  
Stefano Taddei ◽  
Valentina Vannucchi ◽  
Michele Bendoni ◽  
Bartolomeo Doronzo ◽  
...  

<p>In this work we present the results obtained through a dynamic downscaling of the ERA5 reanalysis dataset (hindcast) of ECMWF, using high-resolution meteorological and wave models defined on unstructured computation grids along the Mediterranean coasts, with a particular focus on the North-Western Mediterranean area. Downscaling of the ERA5 meteorological data is obtained through the BOLAM and MOLOCH models (up to a resolution of 2.5 km) which force an unstructured WW3 model with a resolution of up to 500 m along the coast. Models were validated through available meteorological stations, wave buoy data and X-band wave radars, the latter for the purposes of wave spectra validation.</p><p>On the one hand, this allowed, by extracting the time series of some attack parameters of the waves along the coast, and according to the type of coast (rocky coasts, sandy coasts, coastal structures etc.), to compute the return periods and to characterize the impact of any individual storm. On the other hand, it is possible to highlight some trends observed in the last 30 years, during which recent research is showing an increasing evidence  of some changes in global circulation at regional to local scales. These changes also include effects of wind rotation, wave regimes, storm surges, wave-induced coastal currents and coastal morphodynamics. For example, in the North-Western Mediterranean extreme events belonging to cyclonic weather-types circulation with stronger S-SE components (like the storm of October 28-30th 2018 and many others), rather than events associated with perturbations of Atlantic origin and zonal circulation, are becoming more frequent. These long-term wind/wave climate trends can have consequences not only in the assessment of long-term risk due to main morphodynamic variations (ie. coastal erosion), but also in the short-term risk assessment.</p><p>This work was funded by the EU MAREGOT project (2017-2020) and ECMWF Special Project spitbran  “Evaluation of coastal climate trends in the Mediterranean area by means of high-resolution and multi-model downscaling of ERA5 reanalysis” (2018-2020).</p>


2017 ◽  
Vol 98 (5) ◽  
pp. 1003-1009 ◽  
Author(s):  
Luca Bittau ◽  
Mattia Leone ◽  
Adrien Gannier ◽  
Alexandre Gannier ◽  
Renata Manconi

Sowerby's beaked whale (Mesoplodon bidens) was previously known in the Mediterranean Sea from a single live stranding of two individuals in the French Riviera. We report here on two live sightings in the western Mediterranean, central-western Tyrrhenian Sea off eastern Corsica (Montecristo Trough) and off eastern Sardinia (Caprera Canyon) in 2010 and 2012, respectively. In both cases single individuals, possibly the same individual, occurred within groups of Cuvier's beaked whales (Ziphius cavirostris) suggesting inter-specific interactions. Based on our close observations of mixed-species groups of Sowerby's and Cuvier's beaked whales, we hypothesize that some previous long-distance sightings of beaked whales in the Mediterranean may not be reliably attributed to Z. cavirostris. The present sightings and previous live stranding indicate that the western Mediterranean Sea is the easternmost marginal area of M. bidens within the North Atlantic geographic range. Notes on behaviour are also provided.


1905 ◽  
Vol 2 (10) ◽  
pp. 462-467 ◽  
Author(s):  
C. I. Forsyth Major

In a former publication I have dealt with the anatomy of Prolagus sardus (Wagn.), from the Sardinian and Corsican Pleistocene, in comparison with that of its Tertiary relatives. The following pages deal with the geographical distribution of Pleistocene Prolagus and its bearing on more general questions.When Ouvier discovered, in the ossiferous breccia of Corsica, remains of a ‘Lagomys,’ which he believed to be closely related to the Siberian Lagomys alpinus, he also suggested other analogies between the faunas of the two regions—Siberia and Corsica (as well as Sardinia), and commented upon the supposed relationship between the insular Mouflon and the Siberian Argali. Similar views were expressed by B. Wagner.Pumpelly, Loeard, and Lortet sought to establish a connection between a supposed Corsioan ‘ice-age,’ as attested by the trace of ancient glaciers, and the former existence in the island of a supposed inhabitant of cold regions, the Lagomys corsicanus. Hensel had, however, shown before, in 1856, that the affinities of Lagomys sardus from the Sardinian bone breccia are not with the recent Lagomys (Ogotona), but with a Miocene type, for which he proposed the generic name Myolagus (antedated by Prolagus, Pormel). He was in consequence inclined to assume a Tertiary age for the breccias in which the Prolagus occurred (and, indeed, for the whole of the Mediterranean bone breccias). A similar view has again been brought forward of late years.I myself pointed out (1) that the Corsican Lagomys likewise belonged to the genus Prolagus, as indeed had already been suspected by Hensel from his inspection of Cuvier's figures; (2) that the Tertiary age of the Corsican and Sardinian breccias could not be upheld, above all, because the mollusca occurring in them, as Loeard bad shown to be the case in the ossiferous breccia of Toga, near Bastia, are still living in the neighbourhood.


2005 ◽  
Vol 56 (5) ◽  
pp. 599 ◽  
Author(s):  
B. Morales-Nin ◽  
S. C. Swan ◽  
J. D. M. Gordon ◽  
M. Palmer ◽  
A. J. Geffen ◽  
...  

Sagittal otoliths of European hake obtained from five geographic locations in the north-eastern Atlantic and western Mediterranean were examined using laser ablation and inductively coupled plasma mass spectrometry. Otolith sections were analysed for the isotopes 24Mg, 55Mn, 66Zn, 85Rb, 86Sr, 138Ba and 208Pb, measured relative to 43Ca counts. These analyses considered only age 0 (core area) and ages 1 to 3. Age-related trends in otolith elemental composition were observed in hake from all areas, but were masked by variability between locations. Elemental concentrations generally decreased outside the core, with some increase at age 3. The composition of the otolith core was very distinct from that of the other growth increments. In the Mediterranean, part of this differentiation was a result of Mn, which was present in the core at high concentrations compared with the rest of the otolith. Mediterranean otoliths also had higher concentrations of Sr, Zn and Ba in the core. For most samples a similar trend was observed, although samples from one of the Mediterranean areas showed some differences, mainly in the concentrations of Mg and Sr. These results provide new empirical evidence of the variation in elemental concentrations across hake otoliths with age, at least throughout the first 3 years of life.


Phytotaxa ◽  
2015 ◽  
Vol 204 (1) ◽  
pp. 95
Author(s):  
Mehmet Erkan Uzunhisarcıklı ◽  
Ebru Doğan Güner ◽  
Funda Özbek ◽  
Bilgehan Bilgili

The genus Scrophularia Linnaeus (1753: 619) (Scrophulariaceae) is represented by approximately 270 taxa (species and subspecies) worldwide (Olivencia 2009). It is restricted primarily to the North Temperate Zone (Carlbom 1968). The primary centre of diversity of Scrophularia is located in the Irano-Turanian region. The Mediterranean region is also an important area of diversity and for the endemism rate of Scrophularia (Scheunert & Heubl 2014).


2018 ◽  
Vol 46 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Leigh Royden ◽  
Claudio Faccenna

The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.


Sign in / Sign up

Export Citation Format

Share Document