spontaneously hypertensive rat model
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Hualing Sun ◽  
Conrad P. Hodgkinson ◽  
Richard E. Pratt ◽  
Victor J. Dzau

Hypertension is a major contributor to the global burden of disease. Unfortunately, hypertension is controlled in less than one-fifth of patients worldwide due to either failure to treat or lack of compliance to medication. An ideal therapy would be administered one time only and yield lifelong blood pressure control. We investigated our hypothesis that CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat–associated 9)-mediated disruption of a key gene in the renin-angiotensin system, AGT (angiotensinogen), specifically in the liver, would result in sustained and possibly lifelong reduction in blood pressure. We demonstrated in vitro that the CRISPR/Cas9 system led to a significant reduction in AGT expression in hepatocytes. Delivery of the CRISPR/Cas9 system into the liver via the hepatocyte-targeting adeno-associated virus 8 reduced both AGT expression (40% decrease) and circulating AGT levels (30% decrease). In the SHR (spontaneously hypertensive rat) model of hypertension, CRISPR/Cas9-mediated loss of AGT expression reduced blood pressure in adult animals with established hypertension and prevented the spontaneous development of hypertension in young SHR. Moreover, reductions in blood pressure were prolonged and sustained up to 1 year of follow-up. In addition, the partial disruption of the hepatic AGT gene was sufficient to control hypertension but did not affect the homeostatic response to cardiovascular stress such as sodium depletion and furosemide. In summary, we have demonstrated that targeting the CRISPR/Cas9 system to hepatic AGT results in sustained reduction of blood pressure and is a potential therapy to achieve sustained and possibly lifelong control of human hypertension.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
George Lindesay ◽  
Yvonnick Bézie ◽  
Christophe Ragonnet ◽  
Véronique Duchatelle ◽  
Marc Isabelle ◽  
...  

The spontaneously hypertensive rat model with reduced NO synthesis (SHRLN) shares features with aging and hypertension in humans, among other a severe aortic stiffening. The present in vivo study aimed to compare thoracic (TA) and abdominal (AA) aortic stiffness in the SHRLN (treated 5 weeks with L-NAME), SHR, and normotensive Wistar Kyoto (WKY). Dynamic properties of TA and AA were measured in the same rats, using echotracking recording of aortic diameter coupled with blood pressure (BP). Measurements were performed first at operating BP and then after BP reduction in hypertensive rats, thus in isobaric conditions. Histological staining and immunohistochemistry were used for structural analysis at both sites. At operating pressure, BP and pulse pressure (PP) were higher in SHRLN compared with SHR. Stiffness index was also increased and distensibility decreased in both TA and AA in SHRLN. At WKY-matched blood pressure, isobaric AA parameters remained specifically altered in SHRLN, whereas TA recovered to values identical to WKYs. Collagen, fibronectin, α5-selectin, and FAK were increased in SHRLN compared with SHR or WKY. Nevertheless, only the strong accumulations of fibronectin and collagen at the AA site in SHRLN were associated with intrinsic stiffening. In conclusion, we confirm that NO restriction associated with hypertension induces a severe pathological phenotype and shows that L-NAME induced stiffening is more pronounced in AA than in TA as a result of greater fibrosis.


2018 ◽  
Vol 315 (5) ◽  
pp. H1200-H1214 ◽  
Author(s):  
Roger A. Dampney ◽  
Lisete C. Michelini ◽  
De-Pei Li ◽  
Hui-Lin Pan

The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.


Sign in / Sign up

Export Citation Format

Share Document