emerging insects
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 118 (44) ◽  
pp. e2105692118
Author(s):  
S. Henrik Barmentlo ◽  
Maarten Schrama ◽  
Geert R. de Snoo ◽  
Peter M. van Bodegom ◽  
André van Nieuwenhuijzen ◽  
...  

There is an ongoing unprecedented loss in insects, both in terms of richness and biomass. The usage of pesticides, especially neonicotinoid insecticides, has been widely suggested to be a contributor to this decline. However, the risks of neonicotinoids to natural insect populations have remained largely unknown due to a lack of field-realistic experiments. Here, we used an outdoor experiment to determine effects of field-realistic concentrations of the commonly applied neonicotinoid thiacloprid on the emergence of naturally assembled aquatic insect populations. Following application, all major orders of emerging aquatic insects (Coleoptera, Diptera, Ephemeroptera, Odonata, and Trichoptera) declined strongly in both abundance and biomass. At the highest concentration (10 µg/L), emergence of most orders was nearly absent. Diversity of the most species-rich family, Chironomidae, decreased by 50% at more commonly observed concentrations (1 µg/L) and was generally reduced to a single species at the highest concentration. Our experimental findings thereby showcase a causal link of neonicotinoids and the ongoing insect decline. Given the urgency of the insect decline, our results highlight the need to reconsider the mass usage of neonicotinoids to preserve freshwater insects as well as the life and services depending on them.


2020 ◽  
Vol 6 (5) ◽  
pp. 445-455
Author(s):  
T. Eriksson ◽  
A.A. Andere ◽  
H. Kelstrup ◽  
V.J. Emery ◽  
C.J. Picard

The yellow mealworm, the larval stage of the darkling beetle Tenebrio molitor, shows great promise as an alternative source of animal protein. Herein we present the 312 Mb draft genome assembled using 10x Genomics linked-read technology to inform research efforts and to provide resources to optimise yellow mealworm for mass production and consumption. The genome with a contig N50 of 39,478 bp contains 89% of conserved arthropod genes among the > 20,000 genes assembled (complete and partial genes). This draft assembly represents a valuable resource to understanding T. molitor biology as a means of producing alternative, sustainable protein for the growing population and in the face of changing climates.


2014 ◽  
Vol 104 (4) ◽  
pp. 453-461 ◽  
Author(s):  
T.Z. Persson Vinnersten ◽  
Ö. Östman ◽  
M.L. Schäfer ◽  
J.O. Lundström

AbstractAnnual variation in flood frequency and hydroperiod during the vegetation season has ecological impacts on the floodplain biota. Although many insect groups may have a lower emergence during a flood event, it is poorly known how annual emergence of insects in temporary wetlands is related to the variation in hydrology. Between May and September, we studied the weekly emergence of 18 insect taxa over six consecutive years, 2002–2007, in six temporary flooded wetlands (four wet meadows and two forest swamps) in the River Dalälven floodplains, Central Sweden. We used emergence traps to collect emerging insects from terrestrial and aquatic parts of wet meadows and swamp forests. In all wetlands, the insect fauna was numerically dominated by the orders Diptera, Hymenoptera, Coleoptera and Homoptera. On a weekly basis, 9 out of the 18 insect taxa had lower emergence in weeks with flood than in weeks with no flood, whereas no taxon had a higher emergence in weeks with flood. Over the seasons, we related insect emergence to seasonal flood frequency and length of hydroperiod. The emergence of most studied taxa decreased with increasing hydroperiod, which suggests that emergence after floods do not compensate for the reduced emergence during floods. Only Culicidae and the aquatic Chironomidae sub-families Tanypodinae and Chironominae showed an increase in emergence with increasing hydroperiod, whereas Staphylinidae peaked at intermediate hydroperiod. We conclude that a hydroperiod covering up to 40% of the vegetation season has a significant negative effect on the emergence of most taxa and that only a few taxa occurring in the temporary wetlands are actually favoured by a flood regime with recurrent and unpredictable floods.


2010 ◽  
Vol 53 (6) ◽  
pp. 1469-1476 ◽  
Author(s):  
Marcelo De Carli ◽  
Bruna Bresolin ◽  
Caciano Pelayo Zapata Noreña ◽  
Irineu Lorini ◽  
Adriano Brandelli

The effect of modified atmosphere packaging on the mortality of Sitophilus spp. in organic maize grain was studied. Maize grains were packed with five different atmospheres consisting of 20% O2, or 20, 40, 60, 80% CO2 with remaining N2. The packages were stored for 30 days at 26°C. CO2 and O2 concentrations were monitored inside the packages during the storage. The moisture content, titratable acidity and pH were analysed on the first and thirtieth day. At 5, 15 and 30 days of storage no significant differences were observed in the percentages of dead insects when CO2 was used. The results of progeny indicated that from the fifth day the number of emerging insects was low at 20, 60 and 80% CO2. Complete inhibition of the insects was achieved with 30 days of exposure in CO2 atmospheres.


2006 ◽  
Vol 63 (11) ◽  
pp. 2543-2552 ◽  
Author(s):  
Tessa B Francis ◽  
Daniel E Schindler ◽  
Jonathan W Moore

Recent research has highlighted the importance of nutrients derived from Pacific salmon (Oncorhynchus spp.) carcasses for coastal freshwater and riparian ecosystems. To investigate the role of emerging aquatic insects in dispersing salmon nutrients from spawning streams to riparian habitats, we quantified the emergence and return rates of mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) on Pick Creek in southwestern Alaska and, using stable isotopes, estimated the associated flux of nutrients derived from sockeye salmon (Oncorhynchus nerka) to streamside forests. Between June and September of 2004, 7.6 mg·m–2 of salmon-derived nitrogen emerged from Pick Creek in the form of aquatic invertebrates, 6.7 mg·m–2 of which was transferred to the terrestrial ecosystem. Dispersal patterns on four area streams showed that the majority of stream-borne nutrients are deposited within 25 m of the stream. Aquatic insects represent a minor vector for salmon nutrients to terrestrial systems, dispersing less than 0.03% of total nitrogen imported to Pick Creek by spawning salmon. Nevertheless, emerging insects make available salmon-derived resources otherwise inaccessible to some terrestrial consumers.


2005 ◽  
Vol 137 (3) ◽  
pp. 337-349 ◽  
Author(s):  
Nadir Erbilgin ◽  
Andrew J. Storer ◽  
David L. Wood ◽  
Thomas R. Gordon

AbstractPitch canker of pines (Pinus spp.) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) (Pinaceae) is caused by the fungus Fusarium circinatum Nirenberg et O'Donnell. In California, infections by F. circinatum occur largely through wounds caused by insects. Field experiments were initiated to determine whether the colonization activities of twig beetles, Pityophthorus spp. (Coleoptera: Scolytidae), could explain the incidence of pitch canker on Monterey pine (P. radiata D. Don), Bishop pine (P. muricata D. Don), ponderosa pine (P. ponderosa var. ponderosa Dougl.), knobcone pine (P. attenuata Lemm.), and Douglas-fir. Asymptomatic branches were cut from each of four pairs of tree species (Monterey–Bishop, Monterey–ponderosa, Monterey–knobcone, Monterey–Douglas-fir) at four sites and attached to the lower canopy of both heterospecific and conspecific host trees (total of four combinations per pair). After 10 weeks, branches were collected and placed in rearing tubes in the laboratory. Emerging insects were identified and placed on a Fusarium-selective medium. Monterey, Bishop, and ponderosa pines were more heavily infested by Pityophthorus spp. than Douglas-fir and knobcone pine. Furthermore, more Pityophthorus beetles emerged from Monterey pine branches placed in Monterey pine canopies than from Monterey pine branches placed in Bishop or ponderosa pine canopies, indicating that reduced emergence (colonization) was caused by the hetero specific host. Relatively fewer insects emerged from sites containing either Monterey and knobcone pines or Monterey pine and Douglas-fir. Fusarium circinatum was not isolated from emerging Pityophthorus spp. Susceptibility of the five host species, based on mean lesion lengths resulting from mechanical inoculations, varied significantly. The longest lesions were on Monterey pine and the shortest were on ponderosa pine and Douglas-fir. The low incidence of pitch canker on Douglas-fir and ponderosa pine in nature compared with that on Monterey, Bishop, and knobcone pines may be explained by the low colonization by twig beetles and the greater resistance of Douglas-fir and ponderosa pine to this disease, compared with the other three hosts.


Sign in / Sign up

Export Citation Format

Share Document