conventional behavior
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Vít Kremláček ◽  
Erik Kertész ◽  
Zoltán Benkő ◽  
Milan Erben ◽  
Robert Jirásko ◽  
...  

Author(s):  
Vít Kremláček ◽  
Erik Kertész ◽  
Zoltán Benkő ◽  
Milan Erben ◽  
Robert Jirásko ◽  
...  

Author(s):  
Libor Dostál ◽  
Vít Kremláček ◽  
Erik Kertész ◽  
Zoltán Benkő ◽  
Milan Erben ◽  
...  

2021 ◽  
Vol 17 (3) ◽  
pp. e1008672
Author(s):  
Wen-Ting Chu ◽  
Jin Wang

Liquid–liquid phase separation (LLPS) of some IDPs/IDRs can lead to the formation of the membraneless organelles in vitro and in vivo, which are essential for many biological processes in the cell. Here we select three different IDR segments of chaperon Swc5 and develop a polymeric slab model at the residue-level. By performing the molecular dynamics simulations, LLPS can be observed at low temperatures even without charge interactions and disappear at high temperatures. Both the sequence length and the charge pattern of the Swc5 segments can influence the critical temperature of LLPS. The results suggest that the effects of the electrostatic interactions on the LLPS behaviors can change significantly with the ratios and distributions of the charged residues, especially the sequence charge decoration (SCD) values. In addition, three different forms of swc conformation can be distinguished on the phase diagram, which is different from the conventional behavior of the free IDP/IDR. Both the packed form (the condensed-phase) and the dispersed form (the dilute-phase) of swc chains are found to be coexisted when LLPS occurs. They change to the fully-spread form at high temperatures. These findings will be helpful for the investigation of the IDP/IDR ensemble behaviors as well as the fundamental mechanism of the LLPS process in bio-systems.


10.2196/16596 ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. e16596
Author(s):  
Rick YC Kwan ◽  
Deborah Lee ◽  
Paul H Lee ◽  
Mimi Tse ◽  
Daphne SK Cheung ◽  
...  

Background Cognitive frailty is the coexistence of physical frailty and cognitive impairment and is an at-risk state for many adverse health outcomes. Moderate-to-vigorous physical activity (MVPA) is protective against the progression of cognitive frailty. Physical inactivity is common in older people, and brisk walking is a feasible form of physical activity that can enhance their MVPA. Mobile health (mHealth) employing persuasive technology has been successful in increasing the levels of physical activity in older people. However, its feasibility and effects on older people with cognitive frailty are unclear. Objective We aimed to identify the issues related to the feasibility of an mHealth intervention and the trial (ie, recruitment, retention, participation, and compliance) and to examine the effects of the intervention on cognitive function, physical frailty, walking time, and MVPA. Methods An open-label, parallel design, randomized controlled trial (RCT) was employed. The eligibility criteria for the participants were age ≥60 years, having cognitive frailty, and having physical inactivity. In the intervention group, participants received both conventional behavior change intervention and mHealth (ie, smartphone-assisted program using Samsung Health and WhatsApp) interventions. In the control group, participants received conventional behavior change intervention only. The outcomes included cognitive function, frailty, walking time, and MVPA. Permuted block randomization in 1:1 ratio was used. The feasibility issue was described in terms of participant recruitment, retention, participation, and compliance. Wilcoxon signed-rank test was used to test the within-group effects in both groups separately. Results We recruited 99 participants; 33 eligible participants were randomized into either the intervention group (n=16) or the control (n=17) group. The median age was 71.0 years (IQR 9.0) and the majority of them were females (28/33, 85%). The recruitment rate was 33% (33/99), the participant retention rate was 91% (30/33), and the attendance rate of all the face-to-face sessions was 100% (33/33). The majority of the smartphone messages were read by the participants within 30 minutes (91/216, 42.1%). ActiGraph (58/66 days, 88%) and smartphone (54/56 days, 97%) wearing compliances were good. After the interventions, cognitive function improvement was significant in both the intervention (P=.003) and the control (P=.009) groups. The increase in frailty reduction (P=.005), walking time (P=.03), step count (P=.02), brisk walking time (P=.009), peak cadence (P=.003), and MVPA time (P=.02) were significant only in the intervention group. Conclusions Our mHealth intervention is feasible for implementation in older people with cognitive impairment and is effective at enhancing compliance with the brisk walking training program delivered by the conventional behavior change interventions. We provide preliminary evidence that this mHealth intervention can increase MVPA time to an extent sufficient to yield clinical benefits (ie, reduction in cognitive frailty). A full-powered and assessor-blinded RCT should be employed in the future to warrant these effects. Trial Registration HKU Clinical Trials Registry HKUCTR-2283; http://www.hkuctr.com/Study/Show/31df4708944944bd99e730d839db4756


2020 ◽  
Author(s):  
Leandro Magalhães ◽  
Francisco Carvalho ◽  
André Silva ◽  
Jorge Barata

In Liquid Rocket Engines, higher combustion efficiencies come at the cost of the propellants exceeding their critical point conditions and entering the supercritical domain. The term fluid is used because, under these conditions, there is no longer a clear distinction between a liquid and a gas phase. The non-conventional behavior  of thermophysical properties makes the modeling of supercritical fluid flows a most challenging task. In the present work, a RANS computational method following an incompressible but variable density approach is devised on which the performance of several turbulence models is compared in conjunction with a high accuracy multi-parameter equation of state. Also, a suitable methodology to describe transport properties accounting for dense fluid corrections is applied. The results are validated against experimental data, becoming clear that there is no trend between turbulence model complexity and the quality of the produced results. For several instances, one- and two- equation turbulence models produce similar and better results than those  of Large Eddy Simulation (LES). Finally, considerations about the applicability of the tested turbulence models in supercritical simulations are given based on the results and the structural nature of each model. Keywords: Supercritial fluids, RANS turbulence modeling, Liquid rocket engines


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1586
Author(s):  
Leandro Magalhães ◽  
Francisco Carvalho ◽  
André Silva ◽  
Jorge Barata

In Liquid Rocket Engines, higher combustion efficiencies come at the cost of the propellants exceeding their critical point conditions and entering the supercritical domain. The term fluid is used because, under these conditions, there is no longer a clear distinction between a liquid and a gas phase. The non-conventional behavior of thermophysical properties makes the modeling of supercritical fluid flows a most challenging task. In the present work, a Reynolds Averaged Navier Stokes (RANS) computational method following an incompressible but variable density approach is devised on which the performance of several turbulence models is compared in conjunction with a high accuracy multi-parameter equation of state. In addition, a suitable methodology to describe transport properties accounting for dense fluid corrections is applied. The results are validated against experimental data, making it clear that there is no trend between turbulence model complexity and the quality of the produced results. For several instances, one- and two-equation turbulence models produce similar results. Finally, considerations about the applicability of the tested turbulence models in supercritical simulations are given based on the results and the structural nature of each model.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kei Shimonishi ◽  
Hiroaki Kawashima

While eye gaze data contain promising clues for inferring the interests of viewers of digital catalog content, viewers often dynamically switch their focus of attention. As a result, a direct application of conventional behavior analysis techniques, such as topic models, tends to be affected by items or attributes of little or no interest to the viewer. To overcome this limitation, we need to identify “when” the user compares items and to detect “which attribute types/values” reflect the user’s interest. This paper proposes a novel two-step approach to addressing these needs. Specifically, we introduce a likelihood-based short-term analysis method as the first step of the approach to simultaneously determine comparison phases of browsing and detect the attributes on which the viewer focuses, even when the attributes cannot be directly obtained from gaze points. Using probabilistic latent semantic analysis, we show that this short-term analysis step greatly improves the results of the subsequent step. The effectiveness of the framework is demonstrated in terms of the capability to extract combinations of attributes relevant to the viewer’s interest, which we call aspects, and also to estimate the interest described by these aspects.


2020 ◽  
Vol 6 (1) ◽  
pp. 142-155
Author(s):  
Takwa A. Khider ◽  
Hayder A. Al-Baghdadi

In order to study the dynamic response of historical masonry structures, a scaled down brick masonry model constructed in civil engineering department at Baghdad University to simulate a part of a real case study, which is Alkifil historic minaret. Most of the previous researches about masonry structures try to understand the behavior of the masonry under seismic loading by experimental and numerical methods. In this paper, the masonry units (bricks) simulated in scale (S= 1/6) with the exact shape of the prototype bricks. Cementitious tile adhesive was selected to be the mortar for the modeling. The height of the model designed to be 1.5 m with a 0.5 m diameter. Detailed construction steps were presented in this paper. Experts built the model with high accuracy. A shaking table and other dynamic testing facilities were used at the University of Baghdad. The model was tested using the time-compressed El Centro 1940 NS earthquake at different amplitudes. The first ground motion of (PGA= 0.05g) which considered as weak ground motion was used to check the adequacy of the conventional behavior of the masonry model and the limit of the elastic behavior of the model during weak earthquakes. Moderate ground motion (PGA=0.15g) was performed to investigate the response of the model with minor to moderate damages. The severe ground motions were not appropriate to use in such circumstances because of the possibility to overturn the model. The experimental results showed very adequacy of the model to withstand the weak and moderate earth motion with no observed cracks.


Sign in / Sign up

Export Citation Format

Share Document