Effects of ground motion spectral shapes on the design of seismic base isolation for multi-story building according to Eurocode 8

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Van Tu Nguyen ◽  
Xuan Dai Nguyen
2012 ◽  
Vol 10 (2) ◽  
pp. 131-154
Author(s):  
Borko Bulajic ◽  
Miodrag Manic ◽  
Djordje Ladjinovic

Eurocode 8 allows that any country can use its own shape of the elastic response spectrum after it defines it in the National Annex. Having in mind that such country-specific spectra are to be derived through analysis of the strong motion data recorded in the considered seismo-tectonic region, in this Paper we discuss the existing and a set of new empirical equations for scaling pseudo-acceleration spectra in Serbia and the whole region of north-western Balkans. We then compare the presented spectra to those proposed by Eurocode 8. Results show that the indiscriminate use of the strong motion data from different seismo-tectonic regions, improper classification of the local soil conditions, and neglect of the effects of deep geology, may all lead to unreliable scaling equations and to extremely biased ground motion estimates. Moreover, only two spectral shapes that are defined for wide magnitude ranges and scaled by a single PGA value, are not able to adequately represent all important features of real strong ground motion, and instead of using such normalized spectra one should rather employ the direct scaling of spectral amplitudes that is based on the analysis of regionally gathered and processed strong motion data.


2011 ◽  
Vol 255-260 ◽  
pp. 2341-2344
Author(s):  
Mohammad Saeed Masoomi ◽  
Siti Aminah Osman ◽  
Ali Jahanshahi

This paper presents the performance of base-isolated steel structures under the seismic load. The main goals of this study are to evaluate the effectiveness of base isolation systems for steel structures against earthquake loads; to verify the modal analysis of steel frame compared with the hand calculation results; and development of a simulating method for base-isolated structure’s responses. Two models were considered in this study, one a steel structure with base-isolated and the other without base-isolated system. The nonlinear time-history analysis of both structures under El Centro 1940 seismic ground motion was used based on finite element method through SAP2000. The mentioned frames were analyzed by Eigenvalue method for linear analysis and Ritz-vector method for nonlinear analysis. Simulation results were presented as time-acceleration graphs for each story, period and frequency of both structures for the first three modes.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


1991 ◽  
Vol 10 (3) ◽  
pp. 152-171 ◽  
Author(s):  
F.-G. Fan ◽  
G. Ahmadi ◽  
N. Mostaghel ◽  
I.G. Tadjbakhsh

2021 ◽  
Author(s):  
◽  
Ivan Banović

The problem under consideration is the earthquake impact on structures. The subject of the performed research is the efficiency of seismic base isolation using layers of predominantly natural materials below the foundation, as well as the development of a numerical model for seismic analysis of structures with such isolation. The aseismic layers below foundation are made of limestone sand - ASL-1, stone pebbles - ASL-2, and stone pebbles combined with layers of geogrid and geomembrane - ASL-3. The experimental research methodology is based on the use of shake-table and other modern equipment for dynamic and static testing of structures. Experiments were conducted on the basis of detailed research plan and program. Efficiency of the limestone sand layer - ASL-1 was tested on cantilever concrete columns, under seismic excitations up to failure, varying the sand thickness and intensity of seismic excitation. Influence of several layer parameters on the efficiency of stone pebble layer - ASL-2 was investigated. For each considered layer parameter, a rigid model M0 was exposed to four different accelerograms, with three levels of peak ground acceleration (0.2 g, 0.4 g and 0.6 g), while all other layer parameters were kept constant. On the basis of test results, the optimal pebble layer was adopted. Afterwards, the optimal ASL-2 efficiency was tested on various model parameters: stiffness (deformable models M1-M4), foundation size (small and large), excitation type (four earthquake accelerograms), and stress level in the model (elastic and up to failure). In the ASL-3 composite aseismic layer, the optimal ASL-2 is combined with a thin additional layer of sliding material (geogrid, geomembrane above limestone sand layer), in order to achieve greater efficiency of this layer than that of the ASL-2. A total of eleven different aseismic layers were considered. To determine the optimal ASL-3, the M0 model was used, like for the ASL-2. On the basis of test results, the optimal ASL-3 layer was adopted (one higher strength geogrid at the pebble layer top). The optimal ASL-3 is tested on various model parameters, analogous to the optimal ASL-2. A numerical model for reliable seismic analysis of concrete, steel, and masonry structures with seismic base isolation using ASL-2 was developed, with innovative constitutive model for seismic isolation. The model can simulate the main nonlinear effects of mentioned materials, and was verified on performed experimental tests. In relation to the rigid base - RB without seismic isolation, model based on the ASL-1 had an average reduction in seismic force and strain/stress by approximately 10% at lower PGA levels and approximately 14% at model failure. Due to the effect of sand calcification over time, the long-term seismic efficiency of such a layer is questionable. It was concluded that the aseismic layers ASL-2 and ASL-3 are not suitable for models of medium-stiff structure M3 and soft structure M4. In relation to the RB without seismic isolation, the M1 (very stiff structure) and M2 (stiff structure) based on the ASL-2 had an average reduction in seismic force and strain/stress by approximately 13% at lower PGA levels and approximately 25% at model failure. In relation to the RB without seismic isolation, the M1 and M2 based on the ASL-3 had an average reduction in seismic force and strain/stress by approximately 25% at lower PGA levels and approximately 34% at model failure. In relation to the RB without seismic isolation, the ASL-2 and ASL-3 did not result in major M1 and M2 model displacements, which was also favourable. It is concluded that the ASL-2 and especially ASL-3 have great potential for seismic base isolation of very stiff and stiff structures, as well as small bridges based on solid ground, but further research is needed. In addition, it was concluded that the developed numerical model has great potential for practical application. Finally, further verification of the created numerical model on the results of other experimental tests is needed, but also improvement of the developed constitutive models.


2018 ◽  
Vol 52 (5) ◽  
pp. 2-5
Author(s):  
Claude Prost ◽  
Bruno Abdelnour

2020 ◽  
Vol 156 ◽  
pp. 05026
Author(s):  
Fauzan ◽  
Afdhalul Ihsan ◽  
Mutia Putri Monika ◽  
Zev Al Jauhari

The amount of potential investment in Padang City, Indonesia since 2017 attracted many investors to contribute to the city. One of the investments is a 12-story hotel that will be constructed in By Pass Street of the city. The hotel is located in a high seismic zone area, so the seismic base isolation has been proposed to be used in the hotel building. The main aim of using a seismic base isolation device is to reduce the inertia forces introduced in the structure due to earthquakes by shifting the fundamental period of the structure out of dangerous resonance range and concentration of the deformation demand at the isolation system. An analytical study on the Reinforced Concrete (RC) hotel building with and without rubber bearing (RB) base isolation is carried out using the response spectrum and time history analysis methods. The results show that internal forces and inter-story drift of the building with high damping rubber bearing (HDRB) are lower than that of the fixed base with a remarkable margin. From this study, it is recommended to use the HDRB base isolation for medium and high rise buildings with soft soil in Padang City, Indonesia.


2012 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Febrin Anas Ismail

Sumatera Barat merupakan daerah rawan gempa. Hal ini dikarenakan daerah sumatera barat terletak di zona subduksi dan zona transformasi yang akan sering menimbulkan gempa bumi. Terjadinya gempa bumi dapat mengakibatkan terjadinya kerusakan pada gedung. Kerusakan tersebut dapat berupa kerusakan elemen non-struktural seperti kerusakan dinding maupun kerusakan elemen struktural seperti balok dan kolom, hingga terjadinya kegagalan struktur yang menyebabkan robohnya bangunan. Pasca gempa 30 September 2009 yang lalu, banyak bangunan bertingkat, bangunan pemerintah maupun swasta mengalami rusak berat. Salah satu contoh gedung tersebut adalah rubuhnya hotel ambacang dan kerusakan berat pada hotel bumi Minang. Untuk mengurangi kerusakan yang diakibatkan oleh gempa bumi, biasanya bangunan diperkuat dengan meningkatkan kekuatan/kekakuan bangunan. Pendekatan lain adalah dengan menggunakan sistem “seismic base isolation system” yaitu suatu sistem yang fleksibel dimana kekakuan bangunan diisolasi dari pondasi di atas tanah sehingga mengurangi aliran “shock” dari gempa ke bangunan di atasnya. Pada penelitian ini mengkaji pengaruh penggunaan seismic base isolation system pada gedung Hotel ibis Padang. Pengaruh yang ditinjau adalah respons struktur gedung terhadap beban gempa. Respon struktural yang menjadi objek adalah gaya dalam dan perpindahan/ displacement Struktur dan lantai. Hal ini dimaksudkan untuk mengetahui berapa besar reduksi gaya dalam dan perpindahan dengan penggunaan seismic base isolation system. Keywords: gempa, kerusakan gedung akibat gempa, seismic base isolation system, respon struktur


Sign in / Sign up

Export Citation Format

Share Document