pesticide adsorption
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
D. Janićijević ◽  
A. Jevremović ◽  
A. Janošević Ležaić ◽  
B. Nedić Vasiljević ◽  
S. Uskoković-Marković ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Amir Hessam Hassani ◽  
Rama Rao Karri ◽  
Bahareh Younesi ◽  
Mansoureh Shayeghi ◽  
...  

AbstractIn the present study, the adsorptive removal of organophosphate diazinon pesticide using porous pumice adsorbent was experimentally investigated in a batch system, modelled and optimized upon response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA), fitted to isotherm, kinetic and thermodynamic models. The quantification of adsorbent elements was determined using EDX. XRD analysis was utilized to study the crystalline properties of adsorbent. The FT-IR spectra were taken from adsorbent before and after adsorption to study the presence and changes in functional groups. The constituted composition of the adsorbent was determined by XRF. Also, the ionic strength and adsorbent reusability were explored. The influences of operational parameters like pH, initial pesticide concentration, adsorbent dosage and contact time were investigated systematically. ANN-GA and RSM techniques were used to identify the optimal process variables that result in the highest removal. Based on the RSM approach, the optimization conditions for maximum removal efficiency is obtained at pH = 3, adsorbent dosage = 4 g/L, contact time = 30 min, and initial pesticide concentration = 6.2 mg/L. To accurately identify the parameters of nonlinear isotherm and kinetic models, a hybrid evolutionary differential evolution optimization (DEO) is applied. Results indicated that the equilibrium adsorption data were best fitted with Langmuir and Temkin isotherms and kinetic data were well described by pseudo-first and second-order kinetic models. The thermodynamic parameters such as entropy, enthalpy and Gibbs energy were evaluated to study the effect of temperature on pesticide adsorption.


2021 ◽  
Vol 11 (11) ◽  
pp. 5147
Author(s):  
Chutima Pluangklang ◽  
Kunwadee Rangsriwatananon

In this work, simple conditions were applied to modify bentonite for the removal of pesticides from aqueous solution. Bentonite was modified in a single step as BA0.5 (with HCl 0.5 M) and BC500 (calcined at 500 °C) and combined steps with different sequences (BA0.5C500 and BC500A0.5). These adsorbents were characterised by XRD, XRF, FT-IR, 27Al MAS NMR, BET, NH3-TPD, TGA, HPLC, particle size analysis and zeta potential. Single-component adsorption with atrazine, diuron, 2,4-D and paraquat was used in aqueous solution at various pesticide concentrations, contact times and pH levels. It was found that the sequence of the treatment significantly affected atrazine adsorption. BC500A0.5 exhibited the highest efficiency for atrazine adsorption in a broad pH range of 3.0–9.0. Its adsorption at pH 6.0 was about 12 times greater than that of other adsorbents with an initial atrazine concentration of 50 mg L−1, which indicates BC500A0.5 specifically for the adsorption of atrazine. In addition, for the simultaneous adsorption of all four pesticides, BC500A0.5 was found to remove the maximum total amount of the pesticides, indicating that it could be used as a good multifunctional adsorbent. All modified bentonites showed similar diuron adsorption better than that of unmodified bentonite. The greatest adsorption of 2,4-D prefers BA0.5C500, occurring at pH 2–4. In the case of paraquat adsorption, all adsorbents are good at absorbing paraquat, but bentonite had the highest rate of paraquat removal, whereas BA0.5C500 was found to have the lowest, and the adsorption increased with increasing pH. Furthermore, the adsorption process on the adsorbents fits well with the Langmuir isotherm and pseudo-second-order kinetics models, as the thermodynamic parameters showed a spontaneous and endothermic process.


Author(s):  
Uwamungu ◽  
Nartey ◽  
Uwimpaye ◽  
Dong ◽  
Hu

The evaluation of biochar application on the adsorption behavior of topramezone on soil under no-tillage (NT) and rotary tillage treatments (RT) has been assessed. Fourier Transform Infra-Red Spectrometry (FTIR), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller) (BET) were used for the biochar characterization. Batch experiments were carried out in a laboratory to assess the adsorption of topramezone on soil through equilibrium and kinetic modeling under biochar addition. The clay content has been found to be higher under NT (18.24 ± 0.01) than under RT (15.91 ± 0.02). The total organic carbon was higher under NT. The topramezone adsorption equilibrium reached after 8 and 12 h, for NT and RT, respectively. The kinetic and thermodynamic analyses showed the adsorption under both treatments matched with pseudo-second-order kinetic and Langmuir models, respectively. After biochar addition, the pesticide adsorption capacity (40 < 25 < 15 °C) increased with decreasing temperature suggesting an exothermic adsorption process while negative values of Gibbs free energy (ΔG); −1848.07 and −366.531 J mol−1; for the soil under NT and RT at 25 °C, respectively, indicated spontaneous adsorption. Negative entropy values (ΔS); −21.92 and −78.296 J mol−1K−1, for NT and RT, respectively, explained a decreased randomness process. The enthalpy was higher (p < 0.05) under RT (−23,274.6 J mol−1) than under NT (−1313.73 J mol−1). Conclusively, it was shown that the topramezone adsorption capacity was higher under NT, and biochar addition increased more pesticide adsorption under NT than under RT.


Sign in / Sign up

Export Citation Format

Share Document