uwb radio
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 18-27
Author(s):  
Niam Tamami ◽  
Bambang Sumantri ◽  
Prima Kristalina

An autonomous vertical take-off and landing (VTOL) must be supported with an accurate positioning system, especially for autonomous take-off, landing, and other tasks in small area. This paper presents a novel method of small local outdoor positioning system for localizing the area of dropping and landing of autonomous VTOL by utilizing the low-cost precision ultra-wide band (UWB) ranging system. We compared symmetrical single sided-two way ranging (SSS-TWR), symmetrical double sided-two way ranging (SDS-TWR), and asymmetrical double sided-two way ranging (ADS-TWR) methods to get precision ranging measurement on UWB radio module. ADS-TWR was superior to others by resulting in minimum distance error. The ADS-TWR average error was 1.38 % (35.88 cm), SDS-TWR average error was 1.83 % (47.58 cm), and SSS-TWR average error was 2.73 % (70.98 cm). Furthermore, the trilateration method was utilized to obtain the local position of the autonomous VTOL. The trilateration method successfully implemented autonomous VTOL quadcopter positioning in a small local outdoor area (20 m x 30 m). Autonomous VTOL has been able to drop seven payloads in seven areas (2 m x 2 m) and landed in the home position (3 m x 3 m) successfully.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3631
Author(s):  
Klemen Bregar ◽  
Andrej Hrovat ◽  
Mihael Mohorčič

Because of the ageing population, the demand for assisted living solutions that can help prolonging independent living of elderly at their homes with reduced interaction with caregivers is rapidly increasing. One of the most important indicators of the users’ well-being is their motion and mobility inside their homes, used either on its own or as contextual information for other more complex activities such as cooking, housekeeping or maintaining personal hygiene. In monitoring users’ mobility, radio frequency (RF) communication technologies have an advantage over optical motion detectors because of their penetrability through the obstacles, thus covering greater areas with fewer devices. However, as we show in this paper, RF links exhibit large variations depending on channel conditions in operating environment as well as the level and intensity of motion, limiting the performance of the fixed motion detection threshold determined on offline or batch measurement data. Thus, we propose a new algorithm with an online adaptive motion detection threshold that makes use of channel impulse response (CIR) information of the IEEE 802.15.4 ultra-wideband (UWB) radio, which comprises an easy-to-install robust motion detection system. The online adaptive motion detection (OAMD) algorithm uses a sliding window on the last 100 derivatives of power delay profile (PDP) differences and their statistics to set the threshold for motion detection. It takes into account the empirically confirmed observation that motion manifests itself in long-tail samples or outliers of PDP differences’ probability density function. The algorithm determines the online threshold by calculating the statistics on the derivatives of the 100 most recent PDP differences in a sliding window and scales them up in the suitable range for PDP differences with multiplication factors defined by a data-driven process using measurements from representative operating environments. The OAMD algorithm demonstrates great adaptability to various environmental conditions and exceptional performance compared to the offline batch algorithm. A motion detection solution incorporating the proposed highly reliable algorithm can complement and enhance various assisted living technologies to assess user’s well-being over long periods of time, detect critical events and issue warnings or alarms to caregivers.


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Alberto Battistel ◽  
Knut Möller

Lung cancer is one of the most common causes of cancer-related death worldwide. It is usually detected by CT or MRI and removed through thoracoscopic surgery. However, during surgery, the lung collapses, and a new determination of the position of the pulmonary nodule is necessary, which is particularly challenging in the case of minimally invasive surgeries when palpation is not possible. In this contribution, ultra-wideband (UWB) radio technology, which employs a short burst of high-frequency electromagnetic waves, is studied to localize the pulmonary nodule. In short, an antenna in close proximity with the lung surface produces a signal, and the echo emanating from discontinuities in the lung tissue, i.e., the pulmonary nodule, can be used for the localization. A similar approach has already been proposed for breast cancer. Simulations were used to explore the relationship between frequency range and penetration depth and showed that shallow nodules, below 2 cm in depth, are difficult to resolve because the echo directly interferes with the propagating signal. On the other hand, given the strong electromagnetic attenuation of lung tissue, echo emanating from near organs is suppressed, and frequency-band tuning can be employed to range the depth of the investigation. Ultimately, this contribution shows how to employ and design UWB technology to localize deep pulmonary nodules through a minimally invasive approach.


2021 ◽  
Vol 11 (9) ◽  
pp. 4282
Author(s):  
Alberto Battistel ◽  
Peter Paul Pott ◽  
Knut Möller

Worldwide, lung cancer is one of the most common causes of cancer-related death. Detected by computer tomography, it is usually removed through thoracoscopic surgery. During the surgery the lung collapses requiring some strategies to track or localize the new position of the lesion. This is particularly challenging in the case of minimally invasive surgeries when mechanical palpation is not possible. Here we undertake a preliminary study with numerical analysis of an ultra-wideband (UWB) radio technology which can be employed directly during thoracoscopic surgery to localize deep solitary pulmonary nodules. This study was conducted through Finite Difference Time Domain (FDTD) simulations, where a spherical target mimicking a nodule located between 1 and 6 cm of depth and an UWB pulse at several frequencies between 0.5 and 5 GHz was used for localization. This investigation quantifies the influence of several parameters, such frequency, lesion depth, and number of acquisitions, on the final confocal image used to locate a cancer in the lung tissue. We also provide extensive discussion on several artifacts that appear in the images. The results show that the cancer localization was possible at operational frequencies below 1 GHz and for deep nodules (>5 cm), while at lower depths and higher frequencies several artifacts hindered its detection.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1787
Author(s):  
Antonio R. Jiménez ◽  
Fernando Seco

The location of people, robots, and Internet-of-Things (IoT) devices has become increasingly important. Among the available location technologies, solutions based on ultrawideband (UWB) radio are having much success due to their accuracy, which is ideally at a centimeter level. However, this accuracy is degraded in most common indoor environments due to the presence of obstacles which block or reflect the radio signals used for ranging. One way to circumvent this difficulty is through robust estimation algorithms based on measurement redundancy, permitting to minimize the effect of significantly erroneous ranges (outliers). This need for redundancy often conflicts with hardware restraints put up by the location system’s designers. In this work, we present a procedure to increase the redundancy of UWB systems and demonstrate it with the help of a commercial system made by Decawave. This system is particularly easy to deploy, by configuring a network of beacons (anchors) and devices (tags) to be located; however, its architecture presents a major disadvantage as each tag to be located can only measure ranges to a maximum of four anchors. This limitation is embedded in the Positioning and Networking Stack (PANS) protocol designed by Decawave, and therefore is not easy to bypass without a total redesign of the firmware. In this paper, we analyze the strategies that we have been able to identify in order to provide this equipment with multiple range measurements, and thus enable each tag to be positioned with more than four measured ranges. We will see the advantages and disadvantages of each of these strategies, and finally we will adopt a solution that we implemented to be able to measure up to eight ranges for each mobile device (tag). This solution implies the duplication of the tags at the mobile user, and the creation of a double interleaved network of anchors. The range among tags and the eight beacons is obtained through an API via a wireless BLE protocol at a 10 Hz rate. A robustified Extended Kalman filter (EKF) is designed to estimate, by trilateration, the position of the pair of mobile tags, using eight ranges. Two different scenarios are used to make localization experimentation: a laboratory and an apartment. Our position estimation, which exploits redundant information and performs outlier removal, is compared with the commercial solution limited to four ranges, demonstrating the need and advantages of our multi-range approach.


2021 ◽  
Vol 264 ◽  
pp. 05060
Author(s):  
Alexander Fedotov ◽  
Vladimir Badenko ◽  
Vladimir Kuptsov ◽  
Sergei Ivanov ◽  
Igor Struchkov

Indoor positioning methods using radio networks are investigated. Time Difference of Arrival (TDOA) method is studied deeply, and the main problems are revealed. Application of ultra-wide band (UWB) radio technology to TDOA method is discussed, and limitations to UWB receiver and transmitter are revealed. These results are of great importance for the organization of unmanned moving devices management in the paradigm of fully autonomous Fabric of the Future in Industry 4.0.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Vasilii Semkin ◽  
Enrico Maria Vitucci ◽  
Franco Fuschini ◽  
Marina Barbiroli ◽  
Vittorio Degli-Esposti ◽  
...  

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 779-789
Author(s):  
Dongquan Huo ◽  
Luhong Mao

AbstractDue to the high redundancy of ultra-wideband (UWB) radio frequency (RF) signal receiving channel and the channel’s non-rotation invariance, the signal-to-noise ratio (SNR) of signal transmission is increased. In order to solve this problem, a circularly symmetric algorithm for the UWB RF signal receiving channel based on spectrum compression cannot effectively reduce the redundancy of UWB RF signal receiving channel; the channel does not have rotation invariance; and the effect of noise reduction is poor. A circularly symmetric algorithm for the UWB RF signal receiving channel based on noise cancellation is proposed, and a noise cancellation structure at the input stage of the receiving channel is constructed to ensure channel noise cancellation and reduce noise in the channel. On this basis, five power zones are used to reasonably select RF devices, receive and downconvert UWB RF signal receiving channel, and convert the received UWB RF signal channel into circular symmetric Gabor transform to reduce redundancy and ensure the strict rotation invariance of the channel. The experimental results show that the proposed algorithm guarantees the quality of the signal and the stable transmission of the signal information. The SNR is 3.8672, and the root mean square error is 0.4078. The third-order cross-modulation coefficient of the signal receiving channel controlled by the algorithm meets the requirements of the index and the mirror frequency rejection requirement of the index.


Sign in / Sign up

Export Citation Format

Share Document