solubility products
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 3 (2) ◽  
pp. 32-41
Author(s):  
Igor Povar ◽  
◽  
Oxana Spinu ◽  
Boris Pintilie

In this paper, original methods for determining such thermodynamic characteristics as solubility K S0 product (KS) or the activity product ( )of slightly soluble hydroxides and acids are communicated. Developed methods for determining KS and solubility S are based only on the pH values of the saturated aqueous solution for a known initial composition of the heterogeneous mixture and the equilibrium constants of an arbitrary set of possible side reactions in the aqueous natural systems. The determination of solubility S and solubility product KS is also possible in the presence of other hydroxides or acids of known concentrations. Deduced equations allow the calculation of such characteristics, as the equilibrium concentrations of the components of slightly soluble compounds in aqueous phase and the degree of precipitation γ of the solid phase for various initial concentrations of the components of the heterogeneous mixture which are known in the process of preparing the mixture, requiring only experimental pH values of a saturated solution. From the known experimental pH data, S and KS were calculated for a series of hydroxides and acids of arbitrary composition. The obtained results correlated well with the known tabular values. Analysis of a number of real systems illustrated the deduced expressions, including calculations and theoretical explanations.


2021 ◽  
Vol 3 (2) ◽  
pp. 61-70
Author(s):  
Igor Povar ◽  
◽  
Oxana Spinu ◽  
Boris Pintilie

The developed method of determining KS from pH metric data has a number of advantages compared to those used traditionally. First, in place of the residual concentrations of the salt components, only the pH value of the saturated solution is used in the derived expressions. Thus, the number of independent variables, which need to be measured experimentally, is reduced. Furthermore, the potentiometric method, used to determine the pH, is sufficiently accurate, simple and universal and does not necessitate the use of ion-selective electrodes. At the same time, the residual concentrations are usually measured by chemical methods, which are inferior in most cases, for several reasons, compared to the potentiometric method. Second, the KS value calculated by the developed method has a thermodynamic character. The organization of the experiment must be appropriate to the applied equations. Therefore, it is necessary to draw attention to the need for high accuracy in the process of preparing the initial solutions, because the initial concentrations of the precipitate components are included in the calculation formulas. The developed method for determining Ks can be applied for systems of any degree of complexity, which contain additional complexing agents.


Author(s):  
Sivachidambaram Sadasivam ◽  
Renato Zagorščak ◽  
Hywel Rhys Thomas ◽  
Krzysztof Kapusta ◽  
Krzysztof Stańczyk

AbstractThis paper deals with the characterisation of inorganic constitutions generated at various operating conditions in the context of underground coal gasification (UCG). The ex situ small-scale experiments were conducted with coal specimens of different rank, from the South Wales Coalfield, Wales, UK, and Upper Silesian Coal Basin, Poland. The experiments were conducted at various gaseous oxidant ratios (water: oxygen = 1:1 and 2:1), pressures (20 bar and 36 bar) and temperatures (650°C, 750°C and 850°C). Increasing the amount of water in the oxidants proportionately decreased the cationic elements but increased the concentrations of anionic species. The temperature played minor impact, while the high-pressure experiments at temperature optimum to produce methane-rich syngas (750°C) showed significant reduction in cationic element generation. However, both coal specimens produced high amount of anionic species (F, Cl, SO4 and NO3). The “Hard” bituminous coal from Poland produced less gasification residues and condensates than the South Wales anthracitic coal due to its higher reactivity. The inorganic composition found in the solid residue was used in the theoretical calculation to predict the dissolved product concentrations when the solid residue interacts with deep coal seam water in the event of UCG cavity flooding. It was evident from the solubility products of the Cr, Ni and Zn that changes in the groundwater geochemistry occur; hence, their transportation in the subsurface must be studied further.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-15
Author(s):  
Stanislav Donchev ◽  
Tsvetan V. Tsenov ◽  
Christomir Christov

Abstract In this study we developed well validated thermodynamic models for solution behavior and solid-liquid equilibrium for all fluoride binary systems, for which activity data are available. The subject of modeling study are 5 fluoride systems of the type 1-1 (HF-H2O, NaF-H2O, KF-H2O, RbF-H2O, and CsF-H2O) and one of 1-2 type (H2SiF6-H2O) from low to very high concentration at 298.15 K. Models are developed on the basis of Pitzer ion interactions approach. The recommendations on mean activity coefficients (γ±) have been used to construct the model for HF-H2O system. To parameterize models for all other 5 binary systems we used all available raw experimental osmotic coefficients data (φ) for whole concentration range of solutions, and up to saturation point. The predictions of new developed here models are in excellent agreement with experimental osmotic coefficients data, and with recommendations on activity coefficients in binary solutions from low to very high concentration: up to 20 mol. kg−1 in HF-H2O, and up to 35.6 mol.kg−1 in CsF-H2O. The Deliquescence Relative Humidity (DRH (%)) and thermodynamic solubility products (as ln Ko sp) of 4 solid phases [NaF(s), KF.2H2O(s), RbF(s), and CsF(s)] have been determined on the basis of evaluated model parameters and using experimental m(sat) solubility data.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zongqiang Zhu ◽  
Hongqu Yang ◽  
Jie Liu ◽  
Yinian Zhu ◽  
Shen Tang ◽  
...  

Basic ferric sulfate-arsenates [FeSAsOH, Fe(SO4)x(AsO4)y(OH)z·nH2O] were prepared and characterized to study their potential fixation of arsenic in the oxidizing and acidic environment through a dissolution for 330d. The synthetic solids were well-shaped monoclinic prismatic crystals. For the dissolution of the sample FeSAsOH–1 [Fe(SO4)0.27(AsO4)0.73 (OH)0.27·0.26H2O] at 25–45°C and initial pH 2, all constituents preferred to be dissolved in the order of AsO43− > SO42− > Fe3+ in 1–3 h, in the order of SO42− > AsO43− > Fe3+ from 1–3 h to 12–24 h, and finally in the order of SO42− > Fe3+ > AsO43−. The released iron, sulfate, and arsenate existed dominantly as Fe3+/Fe(OH)2+/FeSO4+, HSO4−/SO42−/FeSO4+, and H3AsO40/H2AsO4−, respectively. The higher initial pHs (6 and 10) could obviously inhibit the release of Fe3+ from solid into solution, and the solid components were released in the order of SO42− > AsO43− > Fe3+. The crystal tops were first dissolved, and the crystal surfaces were gradually smoothed/rounded until all edges and corners disappeared. The dissociations were restricted by the Fe-O(H) breakdown in the FeO6 octahedra and obstructed by the OH− and AsO4 tetrahedra outliers; the lowest concentration of the dissolved arsenic was 0.045 mg/L. Based on the dissolution experiment at 25°C and pH 2, the solubility products (Ksp) for the basic ferric sulfate-arsenate [Fe(SO4)0.27(AsO4)0.73 (OH)0.27·0.26H2O], which are equal to the ion activity products (logˍIAP) at equilibrium, were calculated to be -23.04 ± 0.01 with the resulting Gibbs free energies of formation (ΔGfo) of −914.06 ± 0.03 kJ/mol.


Author(s):  
Yuriy Andriyko ◽  
Aleksandr O. Andriiko

Background. Generally, it is assumed that the formation of a solid phase (precipitate) happens when the activities of the involved ions would exceed those defined by the thermodynamic solubility product. However, in case of precipitation of metal hydroxides, this is a simplification, and the real pattern is more complicated, since metal ions form strong mono- and polynuclear hydroxocomplexes in a solution. Formation of such complexes, especially those with zero charge, should result in the deviation from the common solubility product rule. Objective. The aim of this paper is to develop a precipitation model, which takes into account the effect of the formation of the hydroxocomplexes on the solubility of a metal hydroxide. Eventually, this solubility includes the sum of the concentrations of metal ions, and all neutral, positively and negatively charged hydroxocomplexes involved in all equilibria in aqueous solution. Methods. We assume that formation of the solid precipitate is the result of spontaneous condensation of polynuclear neutral hydroxocomplexes when their concentrations in a solution exceed a certain critical value. These critical concentrations can be estimated from the consideration of all equilibria with the assumption that the equilibrium constants for the formation of neutral polynuclear complexes when their nuclearity increases by one are approximately equal and do not significantly depend on the size of the particle. Results. Using this approach, we developed the model, which predicts spontaneous condensation with formation of a precipitate. Also, we calculated the dependencies of pH-logCM for precipitation of various divalent cation hydroxides. It was shown that there exist minimal concentrations, below which no precipitates are formed at any pH value. Conclusions. Such approach also explains the nature of linear correlations between logarithms of solubility products and stability constants of neutral complexes described in literature. These results are important for the development and optimization of industrial wastewater treatment processes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yinian Zhu ◽  
Peijie Nong ◽  
Nan Mo ◽  
Zongqiang Zhu ◽  
Huan Deng ◽  
...  

AbstractA complete series of calcite-rhodochrosite solid solutions [(Ca1-xMnx)CO3] are prepared, and their dissolution processes in various water samples are experimentally investigated. The crystal morphologies of the solid solutions vary from blocky spherical crystal aggregates to smaller spheres with an increasing incorporation of Mn in the solids. Regarding dissolution in N2-degassed water, air-saturated water and CO2-saturated water at 25 °C, the aqueous Ca and Mn concentrations reach their highest values after 1240–2400 h, 6–12 h and < 1 h, respectively, and then decrease gradually to a steady state; additionally, the ion activity products (log_IAP) at the final steady state (≈ solubility products in log_Ksp) are estimated to be − 8.46 ± 0.06, − 8.44 ± 0.10 and − 8.59 ± 0.10 for calcite [CaCO3], respectively, and − 10.25 ± 0.08, − 10.26 ± 0.10 and − 10.28 ± 0.03, for rhodochrosite [MnCO3], respectively. As XMn increases, the log_IAP values decrease from − 8.44 ~ − 8.59 for calcite to − 10.25 ~ − 10.28 for rhodochrosite. The aqueous Mn concentrations increase with an increasing Mn/(Ca + Mn) molar ratio (XMn) of the (Ca1-xMnx)CO3 solid solutions, while the aqueous Ca concentrations show the highest values at XMn = 0.53–0.63. In the constructed Lippmann diagram of subregular (Ca1-xMnx)CO3 solid solutions, the solids dissolve incongruently, and the data points of the aqueous solutions move progressively up to the Lippmann solutus curve and then along the solutus curve or saturation curve of pure MnCO3 to the Mn-poor side. The microcrystalline cores of the spherical crystal aggregates are preferentially dissolved to form core hollows while simultaneously precipitating Mn-rich hexagonal prisms.


2021 ◽  
Author(s):  
Fabian Jirasek ◽  
Jakob Burger ◽  
Hans Hasse

The solid-liquid equilibrium (SLE) in the ternary system 2-keto-L-gulonic acid (HKGA) + sodium-2-keto-L-gulonate (NaKGA) + water was studied experimentally at temperatures between 275 and 313 K and ambient pressure. At these conditions, HKGA and NaKGA precipitate as monohydrates: HKGA H2O and NaKGA H2O, respectively. Phase diagrams with one eutonic point are found for all temperatures. A thermodynamic model of the SLE that is based on an extended version of the Debye-Hückel theory was developed and the dissociation constant of HKGA as well as the solubility products of HKGA H2O and NaKGA H2O were determined. The agreement between the experimental data and the results from the model is excellent.


Sign in / Sign up

Export Citation Format

Share Document