lagopus muta
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Andres Mármol-Guijarro ◽  
Robert Nudds ◽  
Lars Folkow ◽  
William Sellers ◽  
Peter Falkingham ◽  
...  

Abstract Substrate supportiveness is linked to the metabolic cost of locomotion, as it influences the depth to which the foot of a moving animal will sink. As track depth increases animals typically reduce their speed to minimise any potential energetic imbalance. Here we examine how self-selected speed in the Svalbard rock ptarmigan is affected by snow supportiveness and subsequent footprint depth measured using thin-blade penetrometry and 3D photogrammetry, respectively. Our findings indicate that snow supportiveness and footprint depth are poor predictors of speed (r2 = 0.149) and stride length (r2 = 0.106). The ptarmigan in our study rarely sunk to depths beyond the intertarsal joint, regardless of the speed, suggesting that at this relatively shallow depth any increased cost is manageable. 3D reconstructions also indicate that the ptarmigan may exploit the compressive nature of snow to generate thrust during stance, as a trend towards greater foot rotations in deeper footprints was found. It remains unclear if the Svalbard ptarmigan are deliberately avoiding unsupportive snowy substrates. However, if they do, these results would be consistent with the idea that animals should choose routes that minimise energy costs of locomotion. Resumen La firmeza del sustrato se asocial al costo metabólico de la locomoción ya que influencia cuán profundo las extremidades de un animal se hunden al moverse. A medida hundimiento aumenta, usualmente los animales reducen su velocidad para minimizar potenciales desbalances energéticos. En este estudio examinamos cómo la velocidad de la perdiz de la roca de Svalbard es afectada por la firmeza del sustrato y la profundidad de hundimiento de sus patas, usando penetrometría y fotogrametría 3D, respectivamente. Nuestros resultados indican que la firmeza de la nieve y la profundidad de hundimiento de las patas no son buenos predictores de la velocidad (r2 = 0.149) y de la longitud de la zancada (r2 = 0.106). La profundidad de las huellas de las perdices de nuestro estudio rara vez sobrepasó la altura de la articulación intertarsal, independientemente de la velocidad de locomoción, sugiriendo que a profundidades relativamente menores los costos energéticos son manejables. Las reconstrucciones 3D también indican que las perdices podrían aprovechar la naturaleza compresiva de la nieve para generar suficiente empuje durante la fase de soporte, ya que se encontró una tendencia hacia mayores rotaciones de la pata en huellas más profundas. Es incierto si las perdices de Svalbard deliberadamente evitan áreas con nieve más blanda. Sin embargo, si lo hacen, estos resultados serían consistentes con la idea de que los animales deberían seleccionar rutas que minimizan los gastos energéticos en locomoción.


2021 ◽  
Author(s):  
Taichi Fujii ◽  
Kaoru Ueno ◽  
Tomoyasu Shirako ◽  
Masatoshi Nakamura ◽  
Motoyasu Minami

DNA metabarcoding was employed to identify plant-derived food resources of the Japanese rock ptarmigan ( Lagopus muta japonica ), registered as a natural living monument in Japan, in the Northern Japanese Alps in Toyama Prefecture, Japan, in July to October, 2015-2018. By combined use of rbcL and ITS2 local databases of 74 alpine plant species found in the study area, a total of 43 plant taxa were identified and could be assigned to 40 species (93.0%), two genera (4.7%), and one family (2.3%). Rarefaction analysis of each sample collection period showed that this study covered more than 90% of the plant food resources found in the study area. Of the 21 plant families identified using the combined rbcL and ITS2 local databases, the most dominant families were Ericaceae (98.1% of 105 fecal samples), followed by Rosaceae (42.9%), Apiaceae (35.2%), and Poaceae (19.0%). In all fecal samples examined, the most frequently encountered plant species were Vaccinium ovalifolium var. ovalifolium (69.5%), followed by Empetrum nigrum var. japonicum (68.6%), Vaccinium sp. (54.3%), Kalmia procumbens (42.9%), and Tilingia ajanensis (34.3%). Rarefaction analysis of each collection period in the study revealed that this study covered more than 90% (from 91.0% in July to 97.5% in September) of the plant food resources found in the study area, and 98.1% of the plant food taxa were covered throughout the entire study period. Thus, DNA metabarcoding using the rbcL and ITS2 local databases of alpine plants in combination and rarefaction analysis are considered to be well suited for estimating the dominant food plants in the diet of Japanese rock ptarmigans. Further, the local database constructed in this study can be used to survey other areas with similar flora.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Appenroth ◽  
Andreas Nord ◽  
David G. Hazlerigg ◽  
Gabriela C. Wagner

Organisms use circadian rhythms to anticipate and exploit daily environmental oscillations. While circadian rhythms are of clear importance for inhabitants of tropic and temperate latitudes, its role for permanent residents of the polar regions is less well understood. The high Arctic Svalbard ptarmigan shows behavioral rhythmicity in presence of light-dark cycles but is arrhythmic during the polar day and polar night. This has been suggested to be an adaptation to the unique light environment of the Arctic. In this study, we examined regulatory aspects of the circadian control system in the Svalbard ptarmigan by recording core body temperature (Tb) alongside locomotor activity in captive birds under different photoperiods. We show that Tb and activity are rhythmic with a 24-h period under short (SP; L:D 6:18) and long photoperiod (LP; L:D 16:8). Under constant light and constant darkness, rhythmicity in Tb attenuates and activity shows signs of ultradian rhythmicity. Birds under SP also showed a rise in Tb preceding the light-on signal and any rise in activity, which proves that the light-on signal can be anticipated, most likely by a circadian system.


Ardeola ◽  
2020 ◽  
Vol 68 (1) ◽  
Author(s):  
Claude Novoa ◽  
Jean Resseguier ◽  
Bertrand Muffat-Joly ◽  
Josep Blanch Casadesus ◽  
Marc Arvin-Bérod ◽  
...  

Ardeola ◽  
2020 ◽  
Vol 68 (1) ◽  
Author(s):  
Gaël Aleix-Mata ◽  
Jesús M. Pérez ◽  
Begoña Adrados ◽  
Mathieu Boos ◽  
Evelyn Marty ◽  
...  

2020 ◽  
Vol 223 (16) ◽  
pp. jeb220699 ◽  
Author(s):  
Daniel Appenroth ◽  
Vebjørn J. Melum ◽  
Alexander C. West ◽  
Hugues Dardente ◽  
David G. Hazlerigg ◽  
...  

ABSTRACTOrganisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74–81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshβ and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.


2020 ◽  
Author(s):  
Daniel Appenroth ◽  
Vebjørn J. Melum ◽  
Alexander C. West ◽  
Hugues Dardente ◽  
David G. Hazlerigg ◽  
...  

AbstractOrganisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions.Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81° north latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms.Here we explored how arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshβ and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity.These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly arctic adaptation modifies seasonal timer mechanisms.Summary statementSvalbard ptarmigan show photoperiodic responses when transferred from constant darkness to constant light without circadian entrainment.


Sign in / Sign up

Export Citation Format

Share Document