scholarly journals Immobilization of Enzymes by Polymeric Materials

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1211
Author(s):  
Xingyi Lyu ◽  
Rebekah Gonzalez ◽  
Andalwisye Horton ◽  
Tao Li

Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.

2019 ◽  
Vol 44 (3) ◽  
pp. 397-407
Author(s):  
Umit Uzun ◽  
Melike Yildirim Akatin

Abstract Background Aim of the study was to immobilize the α-amylase produced earlier from the mesophilic fungus Rhizoctonia solani AG-4 strain ZB-34 by solid-state fermentation and investigate the suitability of immobilized enzymes for some industries. Materials and methods A novel α-amylase from R. solani AG-4 strain ZB-34 was immobilized in chitosan by covalent binding and Ca-alginate by entrapment. Results The efficiency of chitosan and Ca-alginate immobilization was 67.9% and 59.6%, respectively. The immobilized enzymes showed the highest activity in the presence of starch. Optimum values for chitosan and Ca-alginate immobilized enzymes were pH 4.50 and 40°C and pH 5.50 and 60°C, respectively. It was found that immobilized enzymes were highly stable in terms of thermal and pH stabilities. When the chitosan immobilized enzyme was used with detergents, chocolate stains on dirty laundry was better cleaned. Chitosan immobilized R. solani AG-4 strain ZB-34 α-amylase was found to have a higher desizing effect at 40°C in tap water. As a result of Ca-alginate immobilization, the enzyme clarified apple juice more than the free enzyme. Conclusion The results showed that immobilized enzymes might have potential applications in industry. This is the first report immobilizing an α-amylase produced from the fungus R. solani.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Magdy M. Elnashar ◽  
Ghada E. Awad ◽  
Mohamed E. Hassan ◽  
Mohamed S. Mohy Eldin ◽  
Bakry M. Haroun ◽  
...  

β-Galactosidase (β-gal) was immobilized by covalent binding on novelκ-carrageenan gel beads activated by two-step method; the gel beads were soaked in polyethyleneimine followed by glutaraldehyde. 22full-factorial central composite experiment designs were employed to optimize the conditions for the maximum enzyme loading efficiency. 11.443 U of enzyme/g gel beads was achieved by soaking 40 units of enzyme with the gel beads for eight hours. Immobilization process increased the pH from 4.5 to 5.5 and operational temperature from 50 to 55°C compared to the free enzyme. The apparentKmafter immobilization was 61.6 mM compared to 22.9 mM for free enzyme. Maximum velocityVmaxwas 131.2 μmol·min−1while it was 177.1 μmol·min−1for free enzyme. The full conversion experiment showed that the immobilized enzyme form is active as that of the free enzyme as both of them reached their maximum 100% relative hydrolysis at 4 h. The reusability test proved the durability of theκ-carrageenan beads loaded withβ-galactosidase for 20 cycles with retention of 60% of the immobilized enzyme activity to be more convenient for industrial uses.


2008 ◽  
Vol 59 (1) ◽  
pp. 30-32
Author(s):  
Gheorghe Batrinescu ◽  
Dana Garganciuc ◽  
Ovidiu Popa ◽  
Mihaela Olteanu

The membranes with immobilized enzymes have a double role, as a separation barrier and a biocatalyst. The membranes immobilize the enzymes in insoluble state by direct binding (e.g. covalent binding) or in soluble state, by adsorption at the separation surface, depending on the polymer nature and the membrane structure. The researches purpose was to emphasize the biocatalytic activity of a membrane-immobilized enzyme system. This paper relates the original results from the kinetic study of maltodextrine saccharification process. The dextrines are obtained by enzymatic hydrolise of starch with a-amilase.The process took place into an enzymatic membrane bioreactor equipped with an active membrane from brominated polyphenileneoxide with 28% bromination degree, having amyloglucosidase covalently immobilized. In this bioreactor carries on the conversion of dextrines to maltose and glucose, under the biocatalytic action of amyloglucosidase.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3668
Author(s):  
Gabrielle Souza da Silva Barbosa ◽  
Maria Emanuela P. S. Oliveira ◽  
Ana Beatriz S. dos Santos ◽  
Osmar Calderón Sánchez ◽  
Cleide Mara Faria Soares ◽  
...  

In the present work the radish (Raphanus sativus L.) was used as the low-cost alternative source of peroxidase. The enzyme was immobilized in different supports: coconut fiber (CF), calcium alginate microspheres (CAMs) and silica SBA-15/albumin hybrid (HB). Physical adsorption (PA) and covalent binding (CB) as immobilization techniques were evaluated. Immobilized biocatalysts (IBs) obtained were physicochemical and morphologically characterized by SEM, FTIR and TGA. Also, optimum pH/temperature and operational stability were determined. For all supports, the immobilization by covalent binding provided the higher immobilization efficiencies—immobilization yield (IY%) of 89.99 ± 0.38% and 77.74 ± 0.42% for HB and CF, respectively. For CAMs the activity recovery (AR) was of 11.83 ± 0.68%. All IBs showed optimum pH at 6.0. Regarding optimum temperature of the biocatalysts, HB-CB and CAM-CB maintained the original optimum temperature of the free enzyme (40 °C). HB-CB showed higher operational stability, maintaining around 65% of the initial activity after four consecutive cycles. SEM, FTIR and TGA results suggest the enzyme presence on the IBs. Radish peroxidase immobilized on HB support by covalent binding is promising in future biotechnological applications.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 499 ◽  
Author(s):  
Raneem Ahmad ◽  
Jordan Shanahan ◽  
Sydnie Rizaldo ◽  
Daniel S. Kissel ◽  
Kari L. Stone

In many respects, enzymes offer advantages over traditional chemical processes due to their decreased energy requirements for function and inherent greener processing. However, significant barriers exist for the utilization of enzymes in industrial processes due to their limited stabilities and inability to operate over larger temperature and pH ranges. Immobilization of enzymes onto solid supports has gained attention as an alternative to traditional chemical processes due to enhanced enzymatic performance and stability. This study demonstrates the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) as an enzyme system on Metal-Organic Frameworks (MOFs), UiO-66 and UiO-66-NH2, that produces a more effective biocatalyst as shown by the oxidation of pyrogallol. The two MOFs utilized as solid supports for immobilization were chosen to investigate how modifications of the MOF linker affect stability at the enzyme/MOF interface and subsequent activity of the enzyme system. The enzymes work in concert with activation of HRP through the addition of glucose as a substrate for GOx. Enzyme immobilization and leaching studies showed HRP/GOx@UiO-66-NH2 immobilized 6% more than HRP/GOx@UiO-66, and leached only 36% of the immobilized enzymes over three days in the solution. The enzyme/MOF composites also showed increased enzyme activity in comparison with the free enzyme system: the composite HRP/GOx@UiO-66-NH2 displayed 189 U/mg activity and HRP/GOx@UiO-66 showed 143 U/mg while the free enzyme showed 100 U/mg enzyme activity. This increase in stability and activity is due to the amine group of the MOF linker in HRP/GOx@UiO-66-NH2 enhancing electrostatic interactions at the enzyme/MOF interface, thereby producing the most stable biocatalyst material in solution. The HRP/GOx@UiO-66-NH2 also showed long-term stability in the solid state for over a month at room temperature.


1979 ◽  
Vol 25 (10) ◽  
pp. 1744-1748 ◽  
Author(s):  
R Chirillo ◽  
G Caenaro ◽  
B Pavan ◽  
A Pin

Abstract We describe the use of immobilized enzymes in assay methods for the determination of glucose with glucose oxidase, uric acid with uricase, and urea with urease in serum samples. The enzyme reactor tubes were adapted to continuous-flow analyzers (Technicon AA II, SMA 12/60, and SMAC) used in routine laboratory determinations, and results with their use were compared to those from assays involving soluble enzymes. We substituted the reactors for the free enzyme reagents in the respective channels of the SMA 12/60 and SMAC, without modifying the parameters of the remaining channels. We compared assay sensitivity, precision, and carryover for immobilized and conventional liquid enzymes. Immobilized enzyme reactors provide accurate, reliable, convenient, and economical alternatives to the use of free enzyme reagents in these systems.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1913
Author(s):  
Gordana Hojnik Podrepšek ◽  
Željko Knez ◽  
Maja Leitgeb

In this study, magnetic maghemite nanoparticles, which belong to the group of metal oxides, were functionalized with chitosan, a non-toxic, hydrophilic, biocompatible, biodegradable biopolymer with anti-bacterial effects. This was done using different synthesis methods, and a comparison of the properties of the synthesized chitosan functionalized maghemite nanoparticles was conducted. Characterization was performed using scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Characterizations of size distribution were performed using dynamic light scattering (DLS) measurements and laser granulometry. A chitosan functionalization layer was confirmed using potentiometric titration on variously synthesized chitosan functionalized maghemite nanoparticles, which is important for further immobilization of bioactive compounds. Furthermore, after activation of chitosan functionalized maghemite nanoparticles with glutaraldehyde (GA) or pentaethylenehexamine (PEHA), immobilization studies of enzyme cholesterol oxidase (ChOx) and horseradish peroxidase (HRP) were conducted. Factors influencing the immobilization of enzymes, such as type and concentration of activating reagent, mass ratio between carrier and enzyme, immobilization time and enzyme concentration, were investigated. Briefly, microparticles made using the chitosan suspension cross-linking process (MC2) proved to be the most suitable for obtaining the highest activity of immobilized enzyme, and nanoparticles functionalized with chitosan using the covalent binding method (MC3) could compete with MC2 for their applications.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2014 ◽  
Vol 67 (11) ◽  
pp. 1629 ◽  
Author(s):  
Xuan Wang ◽  
Trevor A. Makal ◽  
Hong-Cai Zhou

Metal–organic frameworks (MOFs), possessing a well defined system of pores, demonstrate extensive potential serving as a platform in biological catalysis. Successful immobilization of enzymes in a MOF system retains the enzymatic activity, renders the active site more accessible to the substrate, and promises recyclability for reuse, and solvent adaptability in a broad range of working conditions. This highlight describes enzyme immobilization on MOFs via covalent binding and its significance.


2016 ◽  
Vol 97 ◽  
pp. 93-99
Author(s):  
Jin Lian Hu ◽  
Harishkumar Narayana

Materials, structures and systems, responsive to an external stimulus are smart and adaptive to our human demands. Among smart materials, polymers with shape memory effect are at the forefront of research leading to comprehensive publications and wide applications. In this paper, we extend the concept of shape memory polymers to stress memory ones, which have been discovered recently. Like shape memory, stress memory represents a phenomenon where the stress in a polymer can be programmed, stored and retrieved reversibly with an external stimulus such as temperature and magnetic field. Stress memory may be mistaken as the recovery stress which was studied quite broadly. Our further investigation also reveals that stress memory is quite different from recovery stress containing multi-components including elastic and viscoelastic forces in addition to possible memory stress. Stress memory could be used into applications such as sensors, pressure garments, massage devices, electronic skins and artificial muscles. The current revelation of stress memory potentials is emanated from an authentic application of memory fibres, films, and foams in the smart compression devices for the management of chronic and therapeutic disorders.


Sign in / Sign up

Export Citation Format

Share Document