ltr retroelements
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Federica Carducci ◽  
Elisa Carotti ◽  
Marco Gerdol ◽  
Samuele Greco ◽  
Adriana Canapa ◽  
...  

AbstractCaudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.



Author(s):  
Anahí Mara Yañez-Santos ◽  
Rosalía Cristina Paz ◽  
Paula Beatriz Paz-Sepúlveda ◽  
Juan Domingo Urdampilleta


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 792 ◽  
Author(s):  
Harrison Cullen ◽  
Andrea J. Schorn

Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.



2020 ◽  
Vol 117 (17) ◽  
pp. 9451-9457 ◽  
Author(s):  
Jullien M. Flynn ◽  
Robert Hubley ◽  
Clément Goubert ◽  
Jeb Rosen ◽  
Andrew G. Clark ◽  
...  

The accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable elements (TEs). Because the types and sequences of TEs are highly variable across species, automated TE discovery and annotation are challenging and time-consuming tasks. A critical first step is the de novo identification and accurate compilation of sequence models representing all of the unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a pipeline that greatly facilitates this process. This program brings substantial improvements over the original version of RepeatModeler, one of the most widely used tools for TE discovery. In particular, this version incorporates a module for structural discovery of complete long terminal repeat (LTR) retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated identification because of their size and sequence complexity. We benchmarked RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually curated TE libraries: Drosophila melanogaster (fruit fly), Danio rerio (zebrafish), and Oryza sativa (rice). In these three species, RepeatModeler2 identified approximately 3 times more consensus sequences matching with >95% sequence identity and sequence coverage to the manually curated sequences than the original RepeatModeler. As expected, the greatest improvement is for LTR retroelements. Thus, RepeatModeler2 represents a valuable addition to the genome annotation toolkit that will enhance the identification and study of TEs in eukaryotic genome sequences. RepeatModeler2 is available as source code or a containerized package under an open license (https://github.com/Dfam-consortium/RepeatModeler, http://www.repeatmasker.org/RepeatModeler/).



2019 ◽  
Author(s):  
Jullien M. Flynn ◽  
Robert Hubley ◽  
Clément Goubert ◽  
Jeb Rosen ◽  
Andrew G. Clark ◽  
...  

AbstractThe accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable elements (TEs). Because the types and sequences of TEs are highly variable across species, automated TE discovery and annotation are challenging and time-consuming tasks. A critical first step is the de novo identification and accurate compilation of sequence models representing all the unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a new pipeline that greatly facilitates this process. This new program brings substantial improvements over the original version of RepeatModeler, one of the most widely used tools for TE discovery. In particular, this version incorporates a module for structural discovery of complete LTR retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated identification because of their size and sequence complexity. We benchmarked RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually curated TE libraries: Drosophila melanogaster (fruit fly), Danio rerio (zebrafish), and Oryza sativa (rice). In these three species, RepeatModeler2 identified approximately three times more consensus sequences matching with >95% sequence identity and sequence coverage to the manually curated sequences than the original RepeatModeler. As expected, the greatest improvement is for LTR retroelements. The program had an extremely low false positive rate when applied to simulated genomes devoid of TEs. Thus, RepeatModeler2 represents a valuable addition to the genome annotation toolkit that will enhance the identification and study of TEs in eukaryotic genome sequences. RepeatModeler2 is available as source code or a containerized package under an open license (https://github.com/Dfam-consortium/RepeatModeler, https://github.com/Dfam-consortium/TETools).SignificanceGenome sequences are being produced for more and more eukaryotic species. The bulk of these genomes is composed of parasitic, self-mobilizing transposable elements (TEs) that play important roles in organismal evolution. Thus there is a pressing need for developing software that can accurately identify the diverse set of TEs dispersed in genome sequences. Here we introduce RepeatModeler2, an easy-to-use package for the curation of reference TE libraries which can be applied to any eukaryotic species. Through several major improvements over the previous version, RepeatModeler2 is able to produce libraries that recapitulate the known composition of three model species with some of the most complex TE landscapes. Thus RepeatModeler2 will greatly enhance the discovery and annotation of TEs in genome sequences.



Genetica ◽  
2017 ◽  
Vol 145 (4-5) ◽  
pp. 417-430 ◽  
Author(s):  
Rosalía Cristina Paz ◽  
Melisa Eliana Kozaczek ◽  
Hernán Guillermo Rosli ◽  
Natalia Pilar Andino ◽  
Maria Virginia Sanchez-Puerta


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 626 ◽  
Author(s):  
José Grau ◽  
Albert J Poustka ◽  
Martin Meixner ◽  
Jörg Plötner


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 425 ◽  
Author(s):  
Mina Rho ◽  
Sarah Schaack ◽  
Xiang Gao ◽  
Sun Kim ◽  
Michael Lynch ◽  
...  


2009 ◽  
Vol 4 (1) ◽  
pp. 41 ◽  
Author(s):  
Carlos Llorens ◽  
Alfonso Muñoz-Pomer ◽  
Lucia Bernad ◽  
Hector Botella ◽  
Andrés Moya


2008 ◽  
Vol 82 (21) ◽  
pp. 10906-10910 ◽  
Author(s):  
Amnon Hizi

ABSTRACT The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5′ end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3′ end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs.



Sign in / Sign up

Export Citation Format

Share Document