mosha fault
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Pınar Büyükakpınar ◽  
Mohammadreza Jamalreyhani ◽  
Mehdi Rezapour ◽  
Stefanie Donner ◽  
Nima Nooshiri ◽  
...  

<p>In May 2020 an earthquake with Mw 5.0 struck at ~40 km east of Tehran metropolis and ~15 km south of the Damavand stratovolcano. It was responsible for 2 casualties and 23 injured. The mainshock was preceded by a foreshock with Ml 2.9 and followed by a significant aftershock sequence, including ten events with Ml 3+. The occurrence of this event raised the question of its relation with volcanic activities and/or concern about the occurrence of larger future earthquakes in the capital of Iran. Tehran megacity is surrounded by several inner-city and adjacent active faults that correspond to high-risk seismic sources in the area. The Mosha fault with ~150 km long is one of the major active faults in central Alborz and east of Tehran. It has hosted several historical earthquakes (i.e. 1665 Mw 6.5 and 1830 Mw 7.1 earthquakes) in the vicinity of the 2020 Mw 5.0 Tehran earthquake’s hypocenter. In this study, we evaluate the seismic sequence of the Tehran earthquake and obtain the full moment tensor inversion of this event and its larger aftershocks, which is a key tool to discriminate between tectonic and volcanic earthquakes. Furthermore, we obtain a robust characterization of the finite fault model of this event applying probabilistic earthquake source inversion framework using near-field strong-motion records and broadband seismograms, with an estimation of the uncertainties of source parameters. Due to the relatively weak magnitude and deeper centroid depth (~12 km), no static surface displacement was observed in the coseismic interferograms, and modeling performed by seismic records. Focal mechanism solution from waveform inversion, with a significant double-couple component, is compatible with the orientation of the sinistral north-dipping Mosha fault at the centroid location. The finite fault model suggests that the mainshock rupture propagated towards the northwest. This directivity enhanced the peak acceleration in the direction of rupture propagation, observed in strong-motion records. The 2020 moderate magnitude earthquake with 2 casualties, highlights the necessity of high-resolution seismic monitoring in the capital of Iran, which is exposed to a risk of destructive earthquakes with more than 10 million population. Our results are important for the hazard and risk assessment, and the forthcoming earthquake early warning system development in Tehran metropolis.</p>


2020 ◽  
Vol 187 ◽  
pp. 104086
Author(s):  
Hamid Reza Javadi ◽  
Meyssam Kouhpeyma ◽  
Parisa Gholami Zadeh ◽  
Amir Naeimi ◽  
Mohammad Reza Sheikholeslami ◽  
...  

2016 ◽  
Vol 43 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Morteza Fattahi ◽  
Mariam Heidary ◽  
Mohammad Ghasemi

Abstract Ira trench site is in a point where, the surface trace of North Tehran Fault (NTF) joins the Mosha Fault (MF) in the north-eastern margin of Tehran and can provide important paleosismological information for Tehran. The Ira trench, were divided into 6 packages (I to VI), described, according to their composition, relative and absolute ages. Package I consists of units 23, 25, 26, 27, 28, 29, 30 and 31. The whole package I mainly belongs to Holocene, and provides essential constraints for the recent paleoearthquake activity of the EMF and NTF zone. Therefore, finding accurate ages for the units of this package is very important. Three colluvial wedges (units 23, 26, 28) are present between 20 and 36.5 m north in package I, which are assigned to 3 episodes of activity on Fault 13. Central age model (CAM) provided OSL ages of 35.0 ± 6.1, 7.3 ± 1.3, 6.4 ± 0.9 and 56 ± 6.5 ka for units 23, 26, 28 and 29, respectively. The conflicting ages of 56 ± 6.5 and 35.0 ± 6.1 ka (for units 23 and 29, respectively) as compared to the underlying younger units suggest that these ages are overestimated. MAM provided OSL ages of 13.1 ± 4.3 and 3.5 ± 0.4 ka for units 23 and 29, respectively. The contribution of the new statistical age model of sample IRA4 to the paleoseismic data is discussed.


2014 ◽  
Vol 51 (9) ◽  
pp. 825-836 ◽  
Author(s):  
Mohsen Ehteshami-Moinabadi

The Mosha Fault is a multiply inverted fault in the Central Alborz. Field observations and structural data from this fault show that a footwall shortcut is the major mode of response of this fault to contractional deformation. Although the Mosha Fault is a basement-involved fault, there is no evidence of involvement of basement along its footwall shortcuts, at least in the study area. Footwall shortcuts along this fault vary in size from several hundreds of metres to tens of kilometres, suggesting that a footwall shortcut can be scale independent. It is proposed that footwall shortcuts can also occur as blind thrusts under fault-related folds in the terrains near the major inverted faults. Similar cases also exist in other regions such as Japan. Some large footwall shortcuts may be the causative fault of devastating earthquakes in the active inverted terrains such as the south Central Alborz. Incompetent layers acting as detachments may play an important role in the development of footwall shortcuts. Recumbent folding in the form of a cover nappe in the footwall of the Mosha Fault is another case of southward migration of deformation along the Mosha Fault by which the fault has responded to the Oligo-Miocene compression. This case can be considered as a newly recognized style of deforming structure that occurred along an inverted fault.


2014 ◽  
Vol 622 ◽  
pp. 81-95 ◽  
Author(s):  
Mohammad R. Ghassemi ◽  
Morteza Fattahi ◽  
Angela Landgraf ◽  
Mehdi Ahmadi ◽  
Paolo Ballato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document