crushed brick
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Er. Tajamul Islam

Abstract: Glass is widely used in our lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. Glass is an ideal material for recycling. The use of recycled glass helps in energy saving. The recycled glass has significant contributions to the construction field for concrete production. The application of glass in architectural concrete still needs improvement. Many experiments were conducted to explore the use of waste glass as coarse and fine aggregates for both ASR (Alkali-Silica-Reaction) in concrete. The accumulation and management of construction and demolition waste, which increases along with the continuous spreading of urbanization and industrialization. Construction and demolition waste can be recycled and used as a raw material for new applications. Recycled brick aggregates recovered from demolished masonry structures can be utilized in the manufacture of new concrete mixtures. Hence, partial replacement of fine aggregate by the other compatible material like sintered fly ash, crushed rock dust, quarry dust, glass powder, recycled concrete dust, and others are being researched from the past two decades to conserve the ecological balance. additional plasticizers have been used for this project for improving their workability. In this project experimental studies on the concrete of M20 grade with partial replacement of fine aggregates by crushed brick powder (replacement by 5%, 10%, 15%,20%,30%) and crushed glass powder (replacement by 5%, 10%, 15%). The compressive strength of M20 grades of concrete at different days (3 days 7 days, 28 days) has been determined along with the measurements of workability in the slump test. The trial cubes were cast and tested at different stages. When fine aggregates are replaced by 30% crushed brick powder. The decrease in strength at the end of 28 days was found to be ranging from 22.2% and 9.81%. when fine aggregates are replaced by 20% crushed glass powder, decrease in the targeted strength at the end of 28 days was found to be ranging between 3.0%and 8.6%. The slump value was found to be decreasing in the case of crushed brick powder, while it was found increasing substantially in the case of glass of glass powder. A combination of both alternatives i.e., brick powder (20%) and glass powder (15%) were also studied and it was found that the compressive strength at the end of 28 days for M20 grade of concrete is 96.13%. Keywords: Glass powder, brick powder, workability, fine aggregate; ASR (Alkali-Silica Reaction); Compressive strength


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2021 ◽  
Vol 768 (1) ◽  
pp. 012081
Author(s):  
Xiaoguang Liang ◽  
Chuanlong Zou ◽  
Shan Chen ◽  
Yanyan Chen

2021 ◽  
pp. 100586
Author(s):  
Parisa Rahimzadeh Oskooei ◽  
Alireza Mohammadinia ◽  
Arul Arulrajah ◽  
Suksun Horpibulsuk

2021 ◽  
Author(s):  
Marek Petreje ◽  
Michal Snehota ◽  
Tomas Chorazy ◽  
Michal Novotny ◽  
Barbora Rybova ◽  
...  

<p>As implementation of green roofs can require a large amount of natural resources, such as water and natural components of growing media, the green roof system that uses principles of circular economy was developed and tested. The objective of the study was to verify the performance of the novel concept of combination of constructed wetland and extensive green roof irrigated with pre-treated grey water. Furthermore, the growing medium of the extensive part of the roof contains fractions of recycled crushed brick and pyrolyzed sewage sludge (biochar). In order to design and select a suitable growing medium, 16 variants of substrates were prepared and tested for water holding capacity and water retention curves. Two small test beds were built to test the viability of the novel green roof concept. In order to assess the effect of pyrolyzed sewage sludge, only one experimental bed contained this material (9.5 vol. %), whereas the crushed brick was part of both substrates (37.5 vol. %). The concept of the constructed wetland-extensive green roof was assessed on the basis of water balance measurements, laboratory analyses of water samples taken from various parts of the experimental beds, temperature and water content measurements along the experimental bed´s layers height. Physical properties of the designed substrates such as maximum water capacity, bulk density, grain size, and pH were determined.</p><p>After the first six months of performance, the concept of the constructed wetland-extensive green roof seems to be viable. There are relatively low concentrations of nutrients (phosphorus and nitrogen) in the leachate from test beds, namely because the irrigation provides the water directly to the drainage layer, and nutrient-rich substrate enriched with biochar isn't leached by irrigation water. Concentrations of nutrients increase only in response to precipitation. The constructed wetland part of the system proven a high potential to reduce the concentration of the nutrient in pre‑treated grey water.</p><p>The vegetation formed by Sedum spp. carpets is prospering well on both test beds. Nutrients from biochar are apparently available for the vegetation. Therefore, the vegetation on the bed with biochar amended substrate shows more vigorous growth and higher evapotranspiration. Substrates amended with recycled materials developed in the study had comparable properties (maximum water capacity, bulk density, pH) with commercial substrates. The monitoring of test beds continues in order to understand better the processes affecting water quantity and quality in long-term perspective.</p>


Sign in / Sign up

Export Citation Format

Share Document