scholarly journals Data-driven asset management in urban water pipe networks: a proposed conceptual framework

Author(s):  
E. Okwori ◽  
Y. Pericault ◽  
R. Ugarelli ◽  
M. Viklander ◽  
A. Hedström

Abstract Analytical tools used in infrastructure asset management of urban water pipe networks are reliant on asset data. Traditionally, data required by analytical tools has not been collected by most water utilities because it has not been needed. The data that is collected might be characterised by low availability, integrity and consistency. A process is required to support water utilities in assessing the accuracy and completeness of their current data management approach and defining improvement pathways in relation to their objectives. This study proposes a framework to enable increased data-driven asset management in pipe networks. The theoretical basis of the framework was a literature review of data management for pipe network asset management and its link to the coherence of set objectives. A survey to identify the current state of data management practice and challenges of asset management implementation in five Swedish water utilities and three focus group workshops with the same utilities was carried out. The main findings of this research were that the quality of pipe network datasets and lack of interoperability between asset management tools was a driver for creating data silos between asset management levels, which may hinder the implementation of data-driven asset management. Furthermore, these findings formed the basis for the proposed conceptual framework. The suggested framework aims to support the selection, development and adoption of improvement pathways to enable increased data-driven asset management in municipal pipe networks. Results from a preliminary application of the proposed framework are also presented.

2019 ◽  
Vol 9 (1) ◽  
pp. 459-467
Author(s):  
Bruno Ferreira ◽  
Nelson J. G. Carriço

AbstractThe current paper aims the application of the Portuguese infrastructure asset management (IAM) methodology to a case study. The inevitable degradation of urban water infrastructures creates new challenges for water utilities engineers and manager, as they need to decide which components should be rehabilitated to efficiently match the public’s demand, while still providing a qualitative and efficient service that doesn’t compromise the financial integrity of water utilities.This methodology is based on a five-step structured sequence - (i) definition of objectives assessment criteria and metrics; (ii) diagnosis; (iii) plan production; (iv) plan implementation; and (v) monitoring and revision – being structured in three distinct levels of planning and decision (i.e., strategic, tactical and operational). The IAM methodology was applied to a sixty-year-old water supply system (WSS) located in Lisbon’s metropolitan area, Portugal, mainly focused on steps (i) to (iii) and to the tactical level of planning. Results obtained are discussed and the main conclusions are presented.


2016 ◽  
Vol 74 (7) ◽  
pp. 1518-1526 ◽  
Author(s):  
M. A. Cardoso ◽  
A. Poças ◽  
M. S. Silva ◽  
R. Ribeiro ◽  
M. C. Almeida ◽  
...  

The requirement to provide urban water services continuously while infrastructures are ageing, imposes the need for increasingly sustainable infrastructure asset management (IAM). To achieve and maintain adequate levels of service, the AWARE-P IAM methodology has been applied in collaborative projects launched by the National Civil Engineering Laboratory, in partnership with IST (Technical University of Lisbon), Addition (software company) and several water utilities. The objective of these projects is to support urban water utilities in the development, implementation and maintenance of IAM plans. To guarantee the success of IAM planning, following the AWARE-P IAM methodology, utilities are required to: consider that the infrastructure has system behaviour and lifespan is indefinite and guarantee the full-alignment of IAM planning with organisation objectives. By analysing the strategic and tactical plans of participating utilities, the proposed methodology principles are discussed and supported. The main innovation results from the implementation of IAM planning are also presented and discussed, including the challenges of setting up an IAM process, together with the major benefits and drawbacks that come up when developing IAM plans. The results were demonstrated by the effective implementation of 16 strategic and 14 tactical IAM plans by the participating utilities.


2013 ◽  
Vol 864-867 ◽  
pp. 2039-2042
Author(s):  
Gao Jie Hang ◽  
Lei Zhang ◽  
He Zhang

There is a great many reasons for pipe explosion of urban water supply pipe networks. Three major aspects of water supply pipe explosion causes were analyzed comprehensively in this paper: natural factors, pipeline factors and human factors, to raise awareness about the causes of pipe explosion.


2020 ◽  
Vol 20 (6) ◽  
pp. 369-377
Author(s):  
Gunhui Chung ◽  
Won Soo Ohk

Due to urban overcrowding, the population density of residential areas and water use per unit are increasing. Therefore, it is necessary to study the flow of water supplied to cities and to improve the healthy circulation of urban water. This study used Modelica, a non-causal analytical program. Using Open Modelica, the researchers constructed a model linking water distribution and sewerage, as the basis of a balanced urban water model. Using the programmer's toolkit provided by EPA-NET and EPA-SWMM, which are commonly used to simulate the existing water supply and sewage pipe networks, Open Modelica-based water distribution networks and sewage pipe networks can be connected and simulated based on the customer block. A model was built so that 90% of the hourly water consumption supplied to the water supply pipe network can be automatically introduced into the sewage pipe network. If a matching table is constructed to connect the nodes of the water supply pipe network and the sewer pipe network, the nodes will reflect in the graphical user interface (GUI) developed in Open Modelica. It was developed to enable modification of links, pumps, tanks, and valves. The 48-hour water supply was simulated using the developed model, and it was confirmed that water supply and sewage networks were successfully connected. In the future, we plan to develop a more expanded and realistic urban water circulation model by considering additional urban water circulation factors, such as sewage treatment, water reuse, rainwater use, storm runoff, and low-impact development facilities. Through this study, it was confirmed that Modelica can simulate changes in the system over time. Since it is a formula-based non-causal simulation language, it is possible to establish and reuse relationships between blocks through block-by-block development of urban water circulation elements. It is expected to contribute to the visualization and concretization of future urban water circulation models.


Author(s):  
Dejan Brkić ◽  
Pavel Praks

Hardy Cross originally proposed a method for analysis of flow in networks of conduits or conductors in 1936. His method was the first really useful engineering method in the field of pipe network calculation. Only electrical analogs of hydraulic networks were used before the Hardy Cross method. A problem with the flow resistance versus the electrical resistance makes these electrical analog methods obsolete. The method by Hardy Cross is taught extensively at faculties and it still remains an important tool for analysis of looped pipe systems. Engineers today mostly use a modified Hardy Cross method which threats the whole looped network of pipes simultaneously (use of these methods without computers is practically impossible). A method from the Russian practice published during 1930s, which is similar to the Hardy Cross method, is described, too. Some notes from the life of Hardy Cross are also shown. Finally, an improved version of the Hardy Cross method, which significantly reduces number of iterations, is presented and discussed. Also we tested multi-point iterative methods which can be used as substitution for the Newton-Raphson approach used by Hardy Cross, but this approach didn’t reduce number of required iterations to reach the final balanced solution. Although, many new models have been developed since the time of Hardy Cross, main purpose of this paper is to illustrate the very beginning of modeling of gas and water pipe networks or ventilation systems.


2019 ◽  
Vol 9 (10) ◽  
pp. 2019 ◽  
Author(s):  
Dejan Brkić ◽  
Pavel Praks

Hardy Cross originally proposed a method for analysis of flow in networks of conduits or conductors in 1936. His method was the first really useful engineering method in the field of pipe network calculation. Only electrical analogs of hydraulic networks were used before the Hardy Cross method. A problem with flow resistance versus electrical resistance makes these electrical analog methods obsolete. The method by Hardy Cross is taught extensively at faculties, and it remains an important tool for the analysis of looped pipe systems. Engineers today mostly use a modified Hardy Cross method that considers the whole looped network of pipes simultaneously (use of these methods without computers is practically impossible). A method from a Russian practice published during the 1930s, which is similar to the Hardy Cross method, is described, too. Some notes from the work of Hardy Cross are also presented. Finally, an improved version of the Hardy Cross method, which significantly reduces the number of iterations, is presented and discussed. We also tested multi-point iterative methods, which can be used as a substitution for the Newton–Raphson approach used by Hardy Cross, but in this case this approach did not reduce the number of iterations. Although many new models have been developed since the time of Hardy Cross, the main purpose of this paper is to illustrate the very beginning of modeling of gas and water pipe networks and ventilation systems. As a novelty, a new multi-point iterative solver is introduced and compared with the standard Newton–Raphson iterative method.


Sign in / Sign up

Export Citation Format

Share Document