intertidal wetlands
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zongxiao Zhang ◽  
Ping Han ◽  
Yanling Zheng ◽  
Shuo Jiao ◽  
Hongpo Dong ◽  
...  

Abstract Estuarine intertidal wetlands pertain to habitats with high productivity on Earth. Bacteria in estuarine intertidal soils regulate carbon (C), nitrogen (N) and sulfur (S) cycles. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, we explored the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions in surface soils from China’s estuarine intertidal flats through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China’s estuarine intertidal soils from various latitudes and helps us understand the effects exerted by environmental factors or climate-related variations on the ecological health and microbial diversity of estuarine intertidal flats.


2021 ◽  
Vol 25 (3) ◽  
pp. 1229-1244
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the “Mini Buoy”, a low-cost underwater float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current-velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence, can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2020 ◽  
Author(s):  
Thorsten Balke ◽  
Alejandra Vovides ◽  
Christian Schwarz ◽  
Gail L. Chmura ◽  
Cai Ladd ◽  
...  

Abstract. Acquiring in-situ data of tidal flooding is key for the successful restoration planning of intertidal wetlands such as salt marshes and mangroves. However, monitoring spatially explicit inundation time series and tidal currents can be costly and technically challenging. With the increasing availability of low-cost sensors and data loggers, customized solutions can now be designed to monitor intertidal hydrodynamics with direct applications for restoration and management. In this study, we present the design, calibration, and application of the Mini Buoy, a low-cost bottom-mounted float containing an acceleration data logger for monitoring tidal inundation characteristics and current velocities derived from single-axis equilibrium acceleration (i.e. logger tilt). The acceleration output of the Mini Buoys was calibrated against water-level and current velocity data in the hypertidal Bay of Fundy, Canada, and in a tidally reconnected former aquaculture pond complex in North Sumatra, Indonesia. Key parameters, such as submersion time and current velocities during submergence can be determined over several months using the Mini Buoy. An open-source application was developed to generate ecologically meaningful hydrological information from the Mini Buoy data for mangrove restoration planning. We present this specific SE Asian mangrove restoration application alongside a flexible concept design for the Mini Buoy to be customized for research and management of intertidal wetlands worldwide.


2020 ◽  
Vol 93 ◽  
pp. 91-97 ◽  
Author(s):  
Cheng Liu ◽  
Lijun Hou ◽  
Min Liu ◽  
Yanling Zheng ◽  
Guoyu Yin ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Song Song ◽  
Zhifeng Wu ◽  
Yuefeng Wang ◽  
Zheng Cao ◽  
Zhenyu He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document