scholarly journals Spatiotemporal Dynamics of Bacterial Taxonomic and Functional Profiles in Estuarine Intertidal Soils of China Coastal Zone

Author(s):  
Zongxiao Zhang ◽  
Ping Han ◽  
Yanling Zheng ◽  
Shuo Jiao ◽  
Hongpo Dong ◽  
...  

Abstract Estuarine intertidal wetlands pertain to habitats with high productivity on Earth. Bacteria in estuarine intertidal soils regulate carbon (C), nitrogen (N) and sulfur (S) cycles. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, we explored the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions in surface soils from China’s estuarine intertidal flats through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China’s estuarine intertidal soils from various latitudes and helps us understand the effects exerted by environmental factors or climate-related variations on the ecological health and microbial diversity of estuarine intertidal flats.

2020 ◽  
Vol 27 (34) ◽  
pp. 42933-42947
Author(s):  
Xia Luo ◽  
Xinyi Xiang ◽  
Guoyi Huang ◽  
Xiaorui Song ◽  
Peijia Wang ◽  
...  

Abstract Extensive construction of dams by humans has caused alterations in flow regimes and concomitant alterations in river ecosystems. Even so, bacterioplankton diversity in large rivers influenced by cascade dams has been largely ignored. In this study, bacterial community diversity and profiles of seven cascade dams along the720 km of the Lancang River were studied using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Spatiotemporal variations of bacterial communities in sediment and water of the Gongguoqiao hydroelectric dam and factors affecting these variations were also examined. Microbial diversity and richness in surface water increased slightly from upstream toward downstream along the river. A significant positive correlation between spatial distance and dissimilarities in bacterial community structure was confirmed (Mantel test, r = 0.4826, p = 0.001). At the Gongguoqiao hydroelectric dam, temporal differences in water overwhelmed spatial variability in bacterial communities. Temperature, precipitation, and nutrient levels were major drivers of seasonal microbial changes. Most functional groups associated with carbon cycling in sediment samples decreased from winter to summer. Our findings improve our understanding of associations, compositions, and predicted functional profiles of microbial communities in a large riverine ecosystem influenced by multiple cascade dams.


2002 ◽  
Vol 68 (12) ◽  
pp. 6094-6105 ◽  
Author(s):  
Regin Rønn ◽  
Allison E. McCaig ◽  
Bryan S. Griffiths ◽  
James I. Prosser

ABSTRACT The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.


2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Xia Luo ◽  
Xinyi Xiang ◽  
Yuanhao Yang ◽  
Guoyi Huang ◽  
Kaidao Fu ◽  
...  

ABSTRACT Terrestrial microbial communities may take advantage of running waters and runoff to enter rivers and mix with aquatic microorganisms. However, the environmental factors governing the interchange of the microbial community within a watercourse and its surrounding environment and the composition of the resulting community are often underestimated. The present study investigated the effect of flow rate on the mixing of water, soil, sediment and biofilm at four sites along the Lancang River and one branch of the river in winter and summer and, in turn, the resultant changes in the microbial community within each habitat. 16S rRNA gene-based Illumina high-throughput sequencing illustrated that bacterial communities were apparently distinct among biofilm, water, soil and sediment. Biofilms had the lowest richness, Shannon diversity and evenness indices compared with other habitats, and those three indices in all habitats increased significantly from winter to summer. SourceTracker analysis showed a significant coalescence between the bacterial communities of sediment, water and biofilm samples at lower flow rates. Additionally, the proportion of Betaproteobacteria in sediment and biofilms increased with a decrease in flow rate, suggesting the flow rate had a strong impact on microbial community composition and exchange among aquatic habitats. These results were further confirmed by a Mantel test and linear regression analysis. Microbial communities in all samples exhibited a significant but very weak distance–decay relationship (r = 0.093, P = 0.024). Turbidity played a much more important role on water bacterial community structure in summer (i.e. rainy season) (BIOENV, r = 0.92). Together, these results suggest that dispersal is an important factor affecting bacterial community structure in this system.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1465
Author(s):  
Chao Shen ◽  
Liuyan Huang ◽  
Guangwu Xie ◽  
Yulai Wang ◽  
Zongkai Ma ◽  
...  

Increasing discharge of plastic debris into aquatic ecosystems and the worsening ecological risks have received growing attention. Once released, plastic debris could serve as a new substrate for microbes in waters. The complex relationship between plastics and biofilms has aroused great interest. To confirm the hypothesis that the presence of plastic in water affects the composition of biofilm in natural state, in situ biofilm culture experiments were conducted in a lake for 40 days. The diversity of biofilm attached on natural (cobble stones (CS) and wood) and plastic substrates (Polyethylene terephthalate (PET) and Polymethyl methacrylate (PMMA)) were compared, and the community structure and composition were also analyzed. Results from high-throughput sequencing of 16S rRNA showed that the diversity and species richness of biofilm bacterial communities on natural substrate (observed species of 1353~1945, Simpson index of 0.977~0.989 and Shannon–Wiener diversity index of 7.42~8.60) were much higher than those on plastic substrates (observed species of 900~1146, Simpson index of 0.914~0.975 and Shannon–Wiener diversity index of 5.47~6.99). The NMDS analyses were used to confirm the taxonomic significance between different samples, and Anosim (p = 0.001, R = 0.892) and Adonis (p = 0.001, R = 808, F = 11.19) demonstrated that this classification was statistically rigorous. Different dominant bacterial communities were found on plastic and natural substrates. Alphaproteobacterial, Betaproteobacteria and Synechococcophycideae dominated on the plastic substrate, while Gammaproteobacteria, Phycisphaerae and Planctomycetia played the main role on the natural substrates. The bacterial community structure of the two substrates also showed significant difference which is consistent with previous studies using other polymer types. Our results shed light on the fact that plastic debris can serve as a new habitat for biofilm colonization, unlike natural substrates, pathogens and plastic-degrading microorganisms selectively attached to plastic substrates, which affected the bacterial community structure and composition in aquatic environment. This study provided a new insight into understanding the potential impacts of plastics serving as a new habitat for microbial communities in freshwater environments. Future research should focus on the potential impacts of plastic-attached biofilms in various aquatic environments and the whole life cycle of plastics (i.e., from plastic fragments to microplastics) and also microbial flock characteristics using microbial plastics in the natural environment should also be addressed.


2010 ◽  
Vol 76 (24) ◽  
pp. 8117-8125 ◽  
Author(s):  
Paul J. Hunter ◽  
Paul Hand ◽  
David Pink ◽  
John M. Whipps ◽  
Gary D. Bending

ABSTRACT Morphological and chemical differences between plant genera influence phyllosphere microbial populations, but the factors driving within-species variation in phyllosphere populations are poorly understood. Twenty-six lettuce accessions were used to investigate factors controlling within-species variation in phyllosphere bacterial populations. Morphological and physiochemical characteristics of the plants were compared, and bacterial community structure and diversity were investigated using terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA gene clone libraries. Plant morphology and levels of soluble carbohydrates, calcium, and phenolic compounds (which have long been associated with plant responses to biotic stress) were found to significantly influence bacterial community structure. Clone libraries from three representative accessions were found to be significantly different in terms of both sequence differences and the bacterial genera represented. All three libraries were dominated by Pseudomonas species and the Enterobacteriaceae family. Significant differences in the relative proportions of genera in the Enterobacteriaceae were detected between lettuce accessions. Two such genera (Erwinia and Enterobacter) showed significant variation between the accessions and revealed microbe-microbe interactions. We conclude that both leaf surface properties and microbial interactions are important in determining the structure and diversity of the phyllosphere bacterial community.


Author(s):  
Chen Zheng-li ◽  
Peng Yu ◽  
Wu Guo-sheng ◽  
Hong Xu-Dong ◽  
Fan Hao ◽  
...  

Abstract Burns destroy the skin barrier and alter the resident bacterial community, thereby facilitating bacterial infection. To treat a wound infection, it is necessary to understand the changes in the wound bacterial community structure. However, traditional bacterial cultures allow the identification of only readily growing or purposely cultured bacterial species and lack the capacity to detect changes in the bacterial community. In this study, 16S rRNA gene sequencing was used to detect alterations in the bacterial community structure in deep partial-thickness burn wounds on the back of Sprague-Dawley rats. These results were then compared with those obtained from the bacterial culture. Bacterial samples were collected prior to wounding and 1, 7, 14, and 21 days after wounding. The 16S rRNA gene sequence analysis showed that the number of resident bacterial species decreased after the burn. Both resident bacterial richness and diversity, which were significantly reduced after the burn, recovered following wound healing. The dominant resident strains also changed, but the inhibition of bacterial community structure was in a non-volatile equilibrium state, even in the early stage after healing. Furthermore, the correlation between wound and environmental bacteria increased with the occurrence of burns. Hence, the 16S rRNA gene sequence analysis reflected the bacterial condition of the wounds better than the bacterial culture. 16S rRNA sequencing in the Sprague-Dawley rat burn model can provide more information for the prevention and treatment of burn infections in clinical settings and promote further development in this field.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


Sign in / Sign up

Export Citation Format

Share Document