scholarly journals Metabolic Stress is Not Sufficient to Increase Skeletal Muscle Tissue Extracellular Vesicle Secretion in an Ex Vivo System

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Zackary Valenti ◽  
Gabriella Hehn ◽  
Daniel Lark
Author(s):  
Andrea L. Estrada ◽  
Zackary J. Valenti ◽  
Gabriella Hehn ◽  
Adam J. Amorese ◽  
Nicholas S. Williams ◽  
...  

Extracellular vesicles (EVs) are biomarkers and modifiers of human disease. EVs secreted by insulin-responsive tissues like skeletal muscle (SkM) and white adipose (WAT) contribute to metabolic health and disease but the relative abundance of EVs from these tissues has not been directly examined. Human Protein Atlas data and directly measuring EV secretion in mouse SkM and WAT using an ex vivo tissue explant model confirmed that SkM tissue secretes more EVs than WAT. Differences in EV secretion between SkM and WAT were not due to SkM contraction but may be explained by differences in tissue metabolic capacity. We next examined how many EVs secreted from SkM tissue ex vivo and in vivo are myofiber-derived. To do this, a SkM myofiber-specific dual fluorescent reporter mouse was created. Spectral flow cytometry revealed that SkM myofibers are a major source of SkM tissue-derived EVs ex vivo and EV immunocapture indicate that ~5% of circulating tetraspanin-positive EVs are derived from SkM myofibers in vivo. Our findings demonstrate that 1) SkM secretes more EVs than WAT, 2) many SkM tissue EVs are derived from SkM myofibers and 3) SkM myofiber-derived EVs reach the circulation in vivo. These findings advance our understanding of EV secretion between metabolically active tissues and provide direct evidence that SkM myofibers secrete EVs that can reach the circulation in vivo.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-575 ◽  
Author(s):  
Bastiaan J. van Nierop ◽  
Anke Stekelenburg ◽  
Sandra Loerakker ◽  
Cees W. Oomens ◽  
Dan Bader ◽  
...  

2005 ◽  
Vol 23 (7) ◽  
pp. 879-884 ◽  
Author(s):  
Shulamit Levenberg ◽  
Jeroen Rouwkema ◽  
Mara Macdonald ◽  
Evan S Garfein ◽  
Daniel S Kohane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document