secretory autophagy
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 234
Author(s):  
Silvina Odete Bustos ◽  
Nathalia Leal Santos ◽  
Roger Chammas ◽  
Luciana Nogueira de Sousa Andrade

Melanoma is the most aggressive skin cancer characterized by high mutational burden and large heterogeneity. Cancer cells are surrounded by a complex environment, critical to tumor establishment and progression. Thus, tumor-associated stromal components can sustain tumor demands or impair cancer cell progression. One way to manage such processes is through the regulation of autophagy, both in stromal and tumor cells. Autophagy is a catabolic mechanism that provides nutrients and energy, and it eliminates damaged organelles by degradation and recycling of cellular elements. Besides this primary function, autophagy plays multiple roles in the tumor microenvironment capable of affecting cell fate. Evidence demonstrates the existence of novel branches in the autophagy system related to cytoplasmic constituent’s secretion. Hence, autophagy-dependent secretion assembles a tangled network of signaling that potentially contributes to metabolism reprogramming, immune regulation, and tumor progression. Here, we summarize the current awareness regarding secretory autophagy and the intersection with exosome biogenesis and release in melanoma and their role in tumor resistance. In addition, we present and discuss data from public databases concerning autophagy and exosome-related genes as important mediators of melanoma behavior. Finally, we will present the main challenges in the field and strategies to translate most of the pre-clinical findings to clinical practice.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2034
Author(s):  
Shan-Ying Wu ◽  
Yu-Lun Chen ◽  
Ying-Ray Lee ◽  
Chiou-Feng Lin ◽  
Sheng-Hui Lan ◽  
...  

Autophagic machinery is involved in selective and non-selective recruitment as well as degradation or exocytosis of cargoes, including pathogens. Dengue virus (DENV) infectioninduces autophagy that enhances virus replication and vesicle release to evade immune systemsurveillance. This study reveals that DENV2 induces autophagy in lung and liver cancer cells andshowed that DENV2 capsid, envelope, NS1, NS3, NS4B and host cell proinflammatory high mobilitygroup box 1 (HMGB1) proteins associated with autophagosomes which were purified by gradientcentrifugation. Capsid, NS1 and NS3 proteins showing high colocalization with LC3 protein in thecytoplasm of the infected cells were detected in the purified double-membrane autophagosome byimmunogold labeling under transmission electron microscopy. In DENV infected cells, the levels ofcapsid, envelope, NS1 and HMGB1 proteins are not significantly changed compared to the dramaticaccumulation of LC3-II and p62/SQSTM1 proteins when autophagic degradation was blocked bychloroquine, indicating that these proteins are not regulated by autophagic degradation machinery.We further demonstrated that purified autophagosomes were infectious when co-cultured withuninfected cells. Notably, these infectious autophagosomes contain DENV2 proteins, negativestrandand full-length genomic RNAs, but no viral particles. It is possible that the infectivity ofthe autophagosome originates from the full-length DENV RNA. Moreover, we reveal that DENV2promotes HMGB1 exocytosis partially through secretory autophagy. In conclusion, we are the firstto report that DENV2-induced double-membrane autophagosomes containing viral proteins andfull-length RNAs are infectious and not undergoing autophagic degradation. Our novel findingwarrants further validation of whether these intracellular vesicles undergo exocytosis to becomeinfectious autophagic vesicles.


2021 ◽  
Author(s):  
Selma Dahmane ◽  
Adeline Kerviel ◽  
Dustin R. Morado ◽  
Kasturika Shankar ◽  
Björn Ahlman ◽  
...  

SummaryEnteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. New virions are thought to be assembled near the genome replication sites and are released in vesicles through secretory autophagy. Here, we use cryo-electron tomography to show that poliovirus assembles directly on replication membranes. Assembly progression beyond a membrane-bound half-capsid intermediate requires the host lipid kinase VPS34, whereas inhibition of ULK1, the initiator of canonical autophagy, leads to accumulation of virions in vast intracellular arrays followed by an increased release at later time points. We further identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from a second class of autophagic membranes containing protein filaments bundles. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.


Author(s):  
Goutham Venkata Naga Davuluri ◽  
Chien-Chin Chen ◽  
Yen-Cheng Chiu ◽  
Hung-Wen Tsai ◽  
Hung-Chih Chiu ◽  
...  

Galectin-1 (Gal-1) is a secretory lectin with pro-tumor activities and is associated strongly with hepatocellular carcinoma (HCC) development. Although Gal-1 is a well-known soluble pro-tumor factor in the tumor microenvironment (TME), the secretion mode of Gal-1 is not clearly defined. On the other hand, in addition to cancer cells, Gal-1 is widely expressed in tumor stromal cells, including tumor-associated macrophages (TAMs). TAMs are a significant component of stromal cells in TME; however, their contributions in producing Gal-1 to TME are still not explored. Here we reveal that TAMs can actively secrete Gal-1 in response to stimuli of HCC cells. Gal-1 produced by TAMs leads to an increase of the systemic level of Gal-1 and HCC tumor growth in mice. Mechanistically, TLR2-dependent secretory autophagy is found to be responsible for Gal-1 secretion from TAMs. Gal-1 acts as a cargo of autophagosomes to fuse with multivesicular bodies via Rab11 and VAMP7-mediated vesicle trafficking before being secreted. This autophagy-regulated Gal-1 secretion in TAMs correlates to poor overall survival and progression-free survival rates of HCC patients. Our findings uncover the secretion mode of Gal-1 via secretory autophagy and highlight the pathological role of TAM-produced Gal-1 in HCC progression.


2021 ◽  
Author(s):  
Tina A Solvik ◽  
Tan A Nguyen ◽  
Yu-Hsiu T Lin ◽  
Timothy Marsh ◽  
Eric J. Huang ◽  
...  

The endosome-lysosome (endolysosome) system plays central roles in both autophagic degradation and secretory pathways, including the exocytic release of extracellular vesicles and particles (EVPs). Although previous work has revealed important interconnections between autophagy and EVP-mediated secretion, our molecular understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition that mediates the EVP-associated extracellular release of autophagic cargo receptors, including p62/SQSTM1. This extracellular secretion is highly regulated and critically dependent on multiple ATGs required for the progressive steps of early autophagosome formation as well as Rab27a-dependent exocytosis. Furthermore, the disruption of autophagosome maturation, either due to genetic inhibition of the autophagosome-to-autolyosome fusion machinery or blockade via the SARS-CoV2 viral protein ORF3a, is sufficient to induce robust EVP-associated secretion of autophagy cargo receptors. Finally, we demonstrate that this ATG-dependent, EVP-mediated secretion pathway buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Based on these results, we propose that secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis in response to endolysosomal dysfunction or impaired autophagosome maturation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Silvia Martinelli ◽  
Elmira A. Anderzhanova ◽  
Thomas Bajaj ◽  
Svenja Wiechmann ◽  
Frederik Dethloff ◽  
...  

AbstractThe stress response is an essential mechanism for maintaining homeostasis, and its disruption is implicated in several psychiatric disorders. On the cellular level, stress activates, among other mechanisms, autophagy that regulates homeostasis through protein degradation and recycling. Secretory autophagy is a recently described pathway in which autophagosomes fuse with the plasma membrane rather than with lysosomes. Here, we demonstrate that glucocorticoid-mediated stress enhances secretory autophagy via the stress-responsive co-chaperone FK506-binding protein 51. We identify the matrix metalloproteinase 9 (MMP9) as one of the proteins secreted in response to stress. Using cellular assays and in vivo microdialysis, we further find that stress-enhanced MMP9 secretion increases the cleavage of pro-brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF). BDNF is essential for adult synaptic plasticity and its pathway is associated with major depression and posttraumatic stress disorder. These findings unravel a cellular stress adaptation mechanism that bears the potential of opening avenues for the understanding of the pathophysiology of stress-related disorders.


2020 ◽  
Vol 7 ◽  
Author(s):  
Sreedevi Padmanabhan ◽  
Ravi Manjithaya

Unconventional protein secretion (UCPS) of leaderless proteins bypasses the conventional endoplasmic reticulum (ER)-Golgi route. The proportion of UCPS in the secretome varies tremendously across eukaryotes. Interestingly, macroautophagy, an intracellular recycling process that is generally involved in cargo degradation, also participates in UCPS. This emerging field of secretory mode of autophagy is underexplored and has several unanswered questions regarding the composition of players, cargo, and the mechanisms that drive it. As secretomes vary considerably across cell types and physiological conditions, the contribution of secretory autophagy in healthy and pathophysiological states remain to be elucidated. Recent studies have begun to shed light on this enigmatic process.


Sign in / Sign up

Export Citation Format

Share Document