scholarly journals Hybrid inflation and waterfall field in string theory from D7-branes

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Osmin Lacombe ◽  
George K. Leontaris

Abstract We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metastable de Sitter vacuum. The inflaton is identified with the volume modulus and has a potential with a very shallow minimum near the maximum. Inflation ends due to the presence of “waterfall” fields that drive the evolution of the Universe from a nearby saddle point towards a global minimum with tuneable vacuum energy describing the present state of our Universe.

2007 ◽  
Vol 22 (10) ◽  
pp. 1797-1818 ◽  
Author(s):  
VISHNU JEJJALA ◽  
DJORDJE MINIC

The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.


2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


1994 ◽  
Vol 09 (30) ◽  
pp. 2755-2760 ◽  
Author(s):  
JORGE L. LOPEZ ◽  
D. V. NANOPOULOS

We consider a string-inspired no-scale SU (5) × U (1) supergravity model. In this model there is a negative contribution to the vacuum energy, which may be suitably canceled by a positive contribution typically present in string theory. One may then end up with a vacuum energy which brings many cosmological observations into better agreement with theoretical expectations, and a fixed value for the present abundance of neutralinos. We delineate the regions of parameter space allowed in this scenario, and study the ensuing predictions for the sparticle and Higgs-boson masses in this model.


2002 ◽  
Vol 17 (30) ◽  
pp. 4567-4589 ◽  
Author(s):  
G. A. DIAMANDIS ◽  
B. C. GEORGALAS ◽  
N. E. MAVROMATOS ◽  
E. PAPANTONOPOULOS

Presently there is preliminary observational evidence that the cosmological constant might be nonzero, and hence that our universe is eternally accelerating (de Sitter). This poses fundamental problems for string theory, since a scattering matrix is not well defined in such universes. In a previous paper we have presented a model, based on (nonequilibrium) noncritical strings, which is characterized by eventual "graceful" exit from a de Sitter phase. The model is based on a type-0 string theory, involving D3 brane worlds, whose initial quantum fluctuations induce the noncriticality. We argue in this paper that this model is compatible with the current observations. A crucial role for the correct "phenomenology" of the model is played by the relative magnitude of the flux of the five-form of the type 0 string to the size of five of the extra dimensions, transverse to the direction of the flux-field. We do not claim, at this stage at least, that this model is a realistic physical model for the universe, but we find it interesting that the model cannot be ruled out immediately, at least on phenomenological grounds.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 685-690 ◽  
Author(s):  
LAWRENCE M. KRAUSS ◽  
ROBERT J. SCHERRER

We demonstrate that as we extrapolate the current ΛCDM universe forward in time, all evidence of the Hubble expansion will disappear, so that observers in our "island universe" will be fundamentally incapable of determining the true nature of the universe, including the existence of the highly dominant vacuum energy, the existence of the CMB, and the primordial origin of light elements. With these pillars of the modern Big Bang gone, this epoch will mark the end of cosmology and the return of a static universe. In this sense, the coordinate system appropriate for future observers will perhaps fittingly resemble the static coordinate system in which the de Sitter universe was first presented.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Osmin Lacombe ◽  
George K. Leontaris

AbstractWe study the cosmological properties of a metastable de Sitter vacuum obtained recently in the framework of type IIB flux compactifications in the presence of three D7-brane stacks, based on perturbative quantum corrections at both world-sheet and string loop level that are dominant at large volume and weak coupling. In the simplest case, the model has one effective parameter controlling the shape of the potential of the inflaton which is identified with the volume modulus. The model provides a phenomenological successful small-field inflation for a value of the parameter that makes the minimum very shallow and near the maximum. The horizon exit is close to the inflection point while most of the required e-folds of the Universe expansion are generated near the minimum, with a prediction for the ratio of tensor-to-scalar primordial fluctuations $$r\simeq 4\times 10^{-4}$$ r ≃ 4 × 10 - 4 . Despite its shallowness, the minimum turns out to be practically stable. We show that it can decay only through the Hawking–Moss instanton leading to an extremely long decay rate. Obviously, in order to end inflation and obtain a realistic model, new low-energy physics is needed around the minimum, at intermediate energy scales of order $$10^{12}$$ 10 12 GeV. An attractive possibility is by introducing a “waterfall” field within the framework of hybrid inflation.


2021 ◽  
Vol 4 (3) ◽  

The Cosmic Time Hypothesis (CTH) presented in this paper is a purely axiomatic theory. In contrast to today's standard model of cosmology, the ɅCDM model, it does not contain empirical parameters such as the cosmological constant Ʌ, nor does it contain sub-theories such as the inflation theory. The CTH was developed solely on the basis of the general theory of relativity (GRT), aiming for the greatest possible simplicity. The simplest cosmological model permitted by ART is the Einstein-de Sitter model. It is the basis for solving some of the fundamental problems of cosmology that concern us today. First of all, the most important results of the CTH: It solves one of the biggest problems of cosmology the problem of the cosmological constant (Ʌ)-by removing the relation between and the vacuum energy density ɛv (Λ=0, ɛv > 0). According to the CTH, the vacuum energy density ɛv is not negative and constant, as previously assumed, but positive and time-dependent (ɛv ̴ t -2). ɛv is part of the total energy density (Ɛ) of the universe and is contained in the energy-momentum tensor of Einstein's field equations. Cosmology is thus freed from unnecessary ballast, i.e. a free parameter (= natural constant) is omitted (Ʌ = 0). Conclusion: There is no "dark energy"! According to the CTH, the numerical value of the vacuum energy density v is smaller by a factor of ≈10-122 than the value calculated from quantum field theory and is thus consistent with observation. The measurement data obtained from observations of SNla supernovae, which suggest a currently accelerated expansion of the universe, result - if interpreted from the point of view of the CTH - in a decelerated expansion, as required by the Einstein-de Sitter universe. Dark matter could also possibly not exist, because the KZH demands that the "gravitational constant" is time-dependent and becomes larger the further the observed objects are spatially and thus also temporally distant from us. Gravitationally bound local systems, e.g. Earth - Moon or Sun - Earth, expand according to the same law as the universe. This explains why Hubble's law also applies within very small groups of galaxies, as observations show. The CTH requires that the strongest force (strong nuclear force) and the weakest (gravitational force) at Planck time (tp ≈10-43 seconds after the "big bang") when all forces of nature are supposed to have been united in a single super force, were of equal magnitude and had the same range. According to the KZH, the product of the strength and range of the gravitational force is constant, i.e. independent of time, and is identical to the product of the strength and range of the strong nuclear force. At Planck time, the universe had the size of an elementary particle (Rp = rE ≈10-15 m). This value also corresponds to the range of the strong nuclear force (Yukawa radius) and the Planck length at Planck time. The CTH provides a possible explanation for Mach's first and second principles. It solves some old problems of the big bang theory in a simple and natural way. The problem of the horizon, flatness, galaxy formation and the age of the world. The inflation theory thus becomes superfluous. • The CTH provides the theoretical basis for the theory of Earth expansion • In Cosmic Time, there was no Big Bang. The universe is infinitely old. • Unlike other cosmological models, the CTH does not require defined "initial conditions" because there was no beginning. • The CTH explains why the cosmic expansion is permanently in an unstable state of equilibrium, which is necessary for a long-term flat (Euclidean), evolutionarily developing universe.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.


1991 ◽  
Vol 06 (03) ◽  
pp. 479-486 ◽  
Author(s):  
KIN-WANG NG

A theory of gravitation with a conformally coupled scalar field is considered in which the gravitational “constant” is associated with the vacuum expectation value of the scalar field. It is found that the universe will remain dominated by classical radiation unless the conformal symmetry is broken. The equations of motion thus derived bear a de Sitter phase solution, which could have an exponential growth of the cosmic scale factor with no vacuum energy. We discuss the cosmological implications of this kind of “inflation”. We also find that in the present theory the smallness of the vacuum energy for most time of the universe is due to the constancy of the gravitational “constant”.


2021 ◽  
pp. 2150160
Author(s):  
N. Sarath ◽  
Titus K. Mathew

Decaying vacuum models are a class of models that incorporate a time-dependent vacuum energy density that can explain the entire evolution of the universe in a unified framework. A general solution to the Friedmann equation is obtained by considering vacuum energy density as a function of the Hubble parameter. We have obtained the asymptotic solution by choosing the equation of state for matter, [Formula: see text] and radiation, [Formula: see text]. Finite boundaries in the early and late de Sitter epoch are defined by considering the evolution of primordial perturbation wavelength. An epoch invariant number [Formula: see text] determines the number of primordial perturbation modes that cross the Hubble radius during each epoch.


Sign in / Sign up

Export Citation Format

Share Document