Investigation of Adsorption of Sulfanilamide Drug on Surfaces of the B12N12 and Al12N12 Fullerenes: A DFT Study

2020 ◽  
Vol 17 ◽  
Author(s):  
Fatemeh Azarakhshi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani ◽  
Masoome Sheikhi

: In current work, the adsorption of Sulfanilamide (SLF) drug over B12N12 and Al12N12 fullerenes was studied using DFT and TDDFT calculations at the M06-2X/6-31+G** level in the solvent water for the first time. The adsorption effect of the SLF on the bonds length, electronic properties such as charge analysis, frontier molecular orbital (FMO), dipole moment and optical properties of B12N12 and Al12N12 fullerenes was investigated. The UV absorption spectra were calculated for study the significant changes are taking place in interactions between SLF and B12N12 and Al12N12 fullerenes. According to charge analysis, it is found that charge transfer occurs from SLF drug to fullerenes and from fullerene to SLF drug. The analysis of the LOL and ELF was shown the N-B and O-B bonds are greater than the other bonds, representing higher electron density localization and stronger covalent characteristic. The adsorption of the SLF from the head of N atom of sulfonamide group on the surface of B12N12 with the lower energy gap (EG) was more considerable than the head O atom and the N atom of NH2-Ar group. It is found that the applied B12N12 fullerene can be suitable as a drug carrier for the delivery of SLF drug.

2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.


2021 ◽  
pp. 1-16
Author(s):  
Ebrahim Balali ◽  
Sanaz Davatgaran ◽  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani

The adsorption of Doxepin (DOX) drug on the surfaces of B12N12 and Al12N12 nanoclusters was studied by using DFT and TD-DFT calculations at the B3PW91 method and 6–31 + G * basis set in the solvent (water). The adsorption effect of the DOX drug on the bond lengths, electronic properties, and dipole moment of the B12N12 and Al12N12 nanoclusters was studied. The change in λ max was assessed by an investigation of calculated UV spectra. NBO analysis displayed a charge transfer between DOX and two nanoclusters. The LOL and ELF values of the B–N bond are the greater than B–O, Al–O, and Al–N bonds, confirming stronger interaction between the boron atom of B12N12 nanocluster and the nitrogen atom of the DOX drug. It is found that the B12N12 nanocluster can be suitable as a drug carrier system for the delivery of DOX drug. The results of our study can be used to design a suitable carrier for the DOX drug.


Author(s):  
Hooriye Yahyaei ◽  
Shamsa Sharifi ◽  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mahin Ahmadianarog

For the first time in the present study, we studied the adsorption effect of the Solriamfetol (SOF) on the electronic and optical properties of B12N12 fullerene using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations with the M062X/6-311++G(d,p) level of theory in the solvent water. The calculated adsorp-tion energies of SOF drug with the B12N12 fullerene were computed at T= 298.15 K with the M062X functional. The UV/Vis absorption spectra were computed and investigated for study the significant changes happening in interactions between SOF and B12N12 fullerene. The IR spectra also were calculated and investigated. The calculated results indicate that the adsorption of the SOF drug from its internal NH2 group on the B12N12 fullerene (configuration B) has the most chemical stability rather than configuration A and C. According to the NBO results, the SOF molecule and B12N12 fullerene identify as both electrons donor and acceptor at the complexes B12N12-SOF. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in the SOF drug and B12N12 fullerene. It is found that the applied B12N12 fullerene can be suitable as a drug carrier for the delivery of SOF as drug for treatment of excessive sleepiness.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098210
Author(s):  
Nguyen Thi Nga ◽  
Do Thi Phuong ◽  
Nguyen Thi Cuc ◽  
Trieu Ha Phuong ◽  
Pham Thi Mai Huong ◽  
...  

Recently, saponins derived from marine sources have received much attention because of their promising bioactivities, such as anticancer, anti-angiogenesis, and anti-inflammation. In particular, a triterpene saponin from the sea cucumber Cercodemas anceps Selenka, cercodemasoide A (CAN1), showed potent cytotoxicity against various cancer cell lines. Recent evidence has indicated that cancer stem cells (CSCs) could be a novel target for efficient cancer therapies. In order to improve the biopharmaceutical properties of CAN1, the compound was loaded into nanoliposomes as an ideal drug carrier. CAN1 was successfully incorporated into nanoliposomes as small unilamellar liposome vesicles with an average size of 73.39 ± 1.57 nm, zeta potential of −0.299 ± 0.046 mV, polydispersity index of 0.336 ± 0.038, and with an encapsulation efficiency of up to 62.9%. For the first time, CAN1 and its nanoliposomal forms have been shown to have a promising cytotoxic activity against NTERA-2 CSCs, with half-maximal inhibitory concentration (IC50) =1.03 ± 0.04 and 0.41 ± 0.03 µM, respectively. The CAN1 nanoliposomes also presented significantly improved activities in suppressing the growth of NTERA-2 3-dimensional tumorspheres (IC50 = 1.71 ± 0.06 µM) in comparison with the free form ( P < .05). The anti-CSC effects of CAN1 nanoliposomes on NTERA-2 cells were due to their apoptotic induction through enhancing caspase-3 activity (more than 2-fold) and arresting the cell cycle at the S phase ( P < .05). The obtained CAN1-encapsulated nanoliposomes suggest valuable applications in CSC-targeting treatment for more efficient clinical therapy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan P. Scheifers ◽  
Kate A. Gibson ◽  
Boniface P. T. Fokwa

Abstract A new ternary phase, TiIrB, was synthesized by arc-melting of the elements and characterized by powder X-ray diffraction. The compound crystallizes in the orthorhombic Ti1+x Rh2−x+y Ir3−y B3 structure type, space group Pbam (no. 55) with the lattice parameters a = 8.655(2), b = 15.020(2), and c = 3.2271(4) Å. Density Functional Theory (DFT) calculations were carried out to understand the electronic structure, including a Bader charge analysis. The charge distribution of TiIrB in the Ti1+x Rh2−x+y Ir3−y B3-type phase has been evaluated for the first time, and the results indicate that more electron density is transferred to the boron atoms in the zigzag B4 units than to isolated boron atoms.


Author(s):  
N. Daho ◽  
N. Benhalima ◽  
F. KHELFAOUI ◽  
O. SADOUKI ◽  
M. Elkeurti ◽  
...  

In this work, a comprehensive investigation of the salicylideneaniline derivatives is carried out using density functional theory to determine their linear and non-linear optical properties. Geometry optimizations, for gas and solvent phases, of the tautomers (enol and keto forms) are calculated using B3LYP levels with 6–31G (d,p) basis set . An intramolecular proton transfer, for 1SA-E and 2SA-E, is performed by a PES scan process at the B3LYP/6-31G (d,p) level. The optical properties are determined and show that they have extremely high nonlinear optical properties. In addition, the RDG analysis, MEP, and gap energy are calculated. The low energy gap value indicates the possibility of intramolecular charge transfer. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the first-order hyperpolarizability (β = 59.6471 × 10-30 esu), confirming that the salicylideneaniline derivatives can be used as attractive future NLO materials. Therefore, the reactive sites are predicted using MEP and the visible absorption maxima are analyzed using a theoretical UV–Vis spectrum. Natural bond orbitals are used to investigate the stability, charge delocalization, and intramolecular hydrogen bond.


2015 ◽  
Vol 1737 ◽  
Author(s):  
Rebecca Isseroff ◽  
Zhenhua Yang ◽  
Jessica Kim ◽  
Andrew Chen ◽  
Miriam Rafailovich

ABSTRACTIn this study, an “inverted” design, phase-separated morphology and gold-functionalized reduced graphene oxide (Au-rGO) were used to address exciton recombination and poor Fermi level alignment. To increase efficiencies, a unique methodology was used to coat Au-rGO on top of the active layer. When 0.05 Au-rGO was blended with the active layer, there were metal-thiolate bonds with P3HT and π-π stacking with PCBM. However, KPFM, measured for the first time for this material, showed that the while 0.05mM Au-rGO reduced the energy gap between P3HT and PBCM, this was offset by recombination. KPFM showed that Au-rGO may be better suited between the active layer and electrode. When 0.5mM Au-rGO was coated on top of the active layer, efficiency increased (p<0.002) nearly 600%, suggesting that Au-rGO is a more effective acceptor than a constituent of the active layer.


Author(s):  
Rabiu Nuhu Muhammad ◽  
N. M. Mahraz ◽  
A. S Gidado ◽  
A. Musa

Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3615-3629 ◽  
Author(s):  
Yanli Li ◽  
Yucheng Feng ◽  
Jun Jing ◽  
Fei Yang

A novel magnetic anticancer drug carrier based on cellulose, guar gum, and Fe3O4 hydrogel microspheres was synthesized by chemical crosslinking. These microspheres were crosslinked with epoxy chloropropane and loaded with 5-fluorouracil (5-fu). The effect of the ratio of cellulose to guar gum on bead size, drug loading, and in vitro release behaviors were investigated. The influence of the magnetic content on drug loading and in vitro release behaviors were also evaluated. The magnetic hydrogel microspheres were characterized via an optical microscope, Fourier transform infrared spectroscopy, swelling behavior analysis, vibrating sample magnetometer, and ultraviolet absorption spectroscopy. The results showed that as the ratio of cellulose to guar gum increased from 3:1 to 5:1, the particle size increased from 395 to 459 um. Moreover, the drug loading capacity, encapsulation efficiency, and in vitro release behavior were influenced by the ratio of cellulose/guar gum and Fe3O4 content. Finally, the Fe3O4 particle had an adsorption effect on the drug, thereby reducing the maximum cumulative release.


Sign in / Sign up

Export Citation Format

Share Document