scholarly journals Impairment of microbial and meiofaunal ecosystem functions linked to algal forest loss

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Silvia Bianchelli ◽  
Roberto Danovaro

AbstractHabitat loss is jeopardizing marine biodiversity. In the Mediterranean Sea, the algal forests of Cystoseira spp. form one of the most complex, productive and vulnerable shallow-water habitats. These forests are rapidly regressing with negative impact on the associated biodiversity, and potential consequences in terms of ecosystem functioning. Here, by comparing healthy Cystoseira forests and barren grounds (i.e., habitats where the macroalgal forests disappeared), we assessed the effects of habitat loss on meiofaunal and nematode biodiversity, and on some ecosystem functions (here measured in terms of prokaryotic and meiofaunal biomass). Overall, our results suggest that the loss of Cystoseira forests and the consequent barren formation is associated with the loss of meiofaunal higher taxa and a decrease of nematode biodiversity, leading to the collapse of the microbial and meiofaunal variables of ecosystem functions. We conclude that, given the very limited resilience of these ecosystems, active restoration of these vulnerable habitats is needed, in order to recover their biodiversity, ecosystem functions and associated services.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Di Iorio ◽  
Manon Audax ◽  
Julie Deter ◽  
Florian Holon ◽  
Julie Lossent ◽  
...  

AbstractMonitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.


2019 ◽  
Author(s):  
Fons van der Plas ◽  
Thomas Schröder-Georgi ◽  
Alexandra Weigelt ◽  
Kathryn Barry ◽  
Sebastian Meyer ◽  
...  

ABSTRACTEarth is home to over 350,000 vascular plant species1 that differ in their traits in innumerable ways. Yet, a handful of functional traits can help explaining major differences among species in photosynthetic rate, growth rate, reproductive output and other aspects of plant performance2–6. A key challenge, coined “the Holy Grail” in ecology, is to upscale this understanding in order to predict how natural or anthropogenically driven changes in the identity and diversity of co-occurring plant species drive the functioning of ecosystems7, 8. Here, we analyze the extent to which 42 different ecosystem functions can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analyzed, the average percentage of variation in ecosystem functioning that they jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem functioning to plant traits analyzed no more than six traits, and when including either only six random or the six most frequently studied traits in our analysis, the average percentage of explained variation in across-year ecosystem functioning dropped to 4.8%. Furthermore, different ecosystem functions were driven by different traits, with on average only 12.2% overlap in significant predictors. Thus, we did not find evidence for the existence of a small set of key traits able to explain variation in multiple ecosystem functions across years. Our results therefore suggest that there are strong limits in the extent to which we can predict the long-term functional consequences of the ongoing, rapid changes in the composition and diversity of plant communities that humanity is currently facing.


2012 ◽  
Vol 367 (1605) ◽  
pp. 2998-3007 ◽  
Author(s):  
Gabriel Yvon-Durocher ◽  
Andrew P. Allen

Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Cameron Wagg ◽  
Klaus Schlaeppi ◽  
Samiran Banerjee ◽  
Eiko E. Kuramae ◽  
Marcel G. A. van der Heijden

Abstract The soil microbiome is highly diverse and comprises up to one quarter of Earth’s diversity. Yet, how such a diverse and functionally complex microbiome influences ecosystem functioning remains unclear. Here we manipulated the soil microbiome in experimental grassland ecosystems and observed that microbiome diversity and microbial network complexity positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multifunctionality). Grassland microcosms with poorly developed microbial networks and reduced microbial richness had the lowest multifunctionality due to fewer taxa present that support the same function (redundancy) and lower diversity of taxa that support different functions (reduced  functional uniqueness). Moreover, different microbial taxa explained different ecosystem functions pointing to the significance of functional diversity in microbial communities. These findings indicate the importance of microbial interactions within and among fungal and bacterial communities for enhancing ecosystem performance and demonstrate that the extinction of complex ecological associations belowground can impair ecosystem functioning.


2010 ◽  
Vol 365 (1549) ◽  
pp. 2107-2116 ◽  
Author(s):  
Mark T. Bulling ◽  
Natalie Hicks ◽  
Leigh Murray ◽  
David M. Paterson ◽  
Dave Raffaelli ◽  
...  

Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH 4 -N into the water column, but no effect of species richness on the release of PO 4 -P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.


2009 ◽  
Vol 24 (2) ◽  
pp. 333-341
Author(s):  
Serge Beslier

AbstractThis paper examines how marine biodiversity and genetic resources in the high seas can be protected and whether their exploitation should be regulated. As to their protection, it raises the question whether existing sectoral approaches should continue or to create a new mechanism based on an integrated approach. In accordance with the European Union's position, the latter is favoured, while acknowledging that several States still have reservations and question the need for new legal instruments. Concerning the necessity of a regulatory scheme governing their exploitation, existing mechanisms under the Law of the Sea Convention and the Convention on Biological Diversity are examined and it is concluded that they are not applicable or do not provide for specific rules on this issue. It is further presumed that the resulting absence of a clear framework is acceptable because the potential of commercial exploitation is still uncertain, so that there will only be scientific research without vital negative impact on the marine environment in the near future. It is suggested that the international community should rather focus on defining the legal status of genetic resources and clarifying whether they belong to the common heritage of mankind and require a benefit-sharing system, as proposed by developing countries.


2018 ◽  
Author(s):  
Andreu Blanco Cartagena ◽  
Jesús Sousa Troncoso ◽  
Celia Olabarria ◽  
Marco Filipe Loureiro Lemos

Negative impacts of marine invasions include loss of genetic diversity, ecosystem functions/processes, and/or community structure and, consequently, a threat to global biodiversity through biotic homogenization. Recent studies indicate that invasive macroalgae make up a significant proportion of marine invasive species. Marine Protected Areas (MPAs) have been proved to have positive effects on marine biodiversity conservation; however, their role in preventing biological invasions, especially macroalgae, is still poorly understood. In this context, we studied the effects of protection and wave exposure on the abundance of six invasive macroalgae (Grateloupia turuturu, Asparagopsis armata, Colpomenia peregrina, Sargassum muticum, Undaria pinnatifida, and Codium fragile ssp. fragile) at two MPAs of the western Iberian Peninsula, one located along the Spanish coast (Illas Atlánticas) and the other on the Portuguese coast (Berlangas). The results showed opposite effects of protection and wave-exposure at the two MPAs. Greater biomass of invasive macroalgae was found at semiexposed areas outside the reserve in the Spanish MPA, whereas in the Portuguese reserve, biomass (especially of A. armata) was significantly greater inside the reserve, mainly at semiexposed sites. These differences highlight the importance of understanding the functioning of reserves to apply proper conservation management policies in order to preserve the MPAs resilience.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan S. Lefcheck ◽  
Graham J. Edgar ◽  
Rick D. Stuart-Smith ◽  
Amanda E. Bates ◽  
Conor Waldock ◽  
...  

AbstractChanging biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.7x more important in maximizing biomass than the remaining influence of other ecological and environmental factors. Differences in fish community biomass across space are equally driven by both reductions in the total number of species and the disproportionate loss of larger-than-average species, which is exacerbated at sites impacted by humans. Our results confirm that sustaining biomass and associated ecosystem functions requires protecting diversity, most importantly of multiple large-bodied species in areas subject to strong human influences.


Sign in / Sign up

Export Citation Format

Share Document