amoebicidal effect
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Ingrid Richer ◽  
Silvia Radosa ◽  
Zoltan Cseresnyes ◽  
Iluiia Ferling ◽  
Hannah Buettner ◽  
...  

The phytopathogenic fungus Rhizopus microsporus harbours a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the toxin rhizoxin, the causative agent of rice seedling blight. This toxinogenic bacterial-fungal alliance is, however, not restricted to the plant disease, but has been detected in numerous environmental isolates from geographically distinct sites covering all five continents. Yet, the ecological role of rhizoxin beyond rice seedling blight has been unknown. Here we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and co-culture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the bacterial rhizoxin congener rhizoxin S2, which is also lethal towards the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analyses, and quantification of nematode movement we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, while worms co-incubated with symbiotic R. microsporus are significantly less lively. This work uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function an evolutionary driving force to maintain toxin-producing endosymbionts in non-pathogenic fungi.


Author(s):  
Ghada Mohamed Kadry ◽  
Mousa A. M. Ismail ◽  
Nagwa Mostafa El-Sayed ◽  
Hanan S. El-Kholy ◽  
Dina M. Hamdy El-Akkad

2017 ◽  
Vol 95 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Shinichi Tomita ◽  
Chie Suzuki ◽  
Hitomi Wada ◽  
Miya Nomachi ◽  
Masaki Imayasu ◽  
...  

Lactoferrin (LF) is an iron-binding basic glycoprotein that has an antimicrobial effect against certain microbes. The purpose of this study is to evaluate the amoebicidal effect of bovine milk LF (bLF) against Acanthamoeba clinical-isolate trophozoites, which cause severe keratitis. Most of the risk factor for Acanthamoeba keratitis is from wearing soft contact lenses (SCLs). Acanthamoeba trophozoites were incubated in bovine LF (bLF) solution, and the ratios of viability and encystment were determined with microscopic analysis of cyst formation. The amoebicidal effect of bLF was assessed by Trypan blue assay. The ratios of viable cells in the presence of iron-free bLF (apo-bLF), native-bLF, and iron-saturated bLF (Fe-bLF) at the concentration of 10 μmol/L for 60 min were 7.7% ± 4.6%, 80.7% ± 10.1%, and 97.3% ± 1.5%, respectively. Apo-bLF showed potent amoebicidal effect against Acanthamoeba trophozoites, but Fe-bLF did not have this effect. After treating with apo-bLF, most dead cells were nonglobular forms of trophozoites but not cystic forms. Encystment of Acanthamoeba was assessed by the sarkosyl-calcofluor white assay. The encystment ratios treated with 0.5% propylene glycol (positive control) and 10 μmol/L apo-bLF for 24 h were 96.12% ± 10.6% and 0.47% ± 0.5%, respectively. These results suggest that the amoebicidal effect of apo-bLF without encystment might lead to the prevention of contamination of Acanthamoeba in SCL stock cases.


2017 ◽  
Vol 58 (5) ◽  
pp. 509 ◽  
Author(s):  
Jae Woo Jung ◽  
Jong Heon Lee ◽  
Sung Hee Park ◽  
Hak Sun Yu ◽  
Yoon Kyung Kim ◽  
...  

2015 ◽  
Vol 29 (12) ◽  
pp. 1982-1986 ◽  
Author(s):  
Thuluz Meza-Menchaca ◽  
Jorge Suárez-Medellín ◽  
Christian Del Ángel-Piña ◽  
Ángel Trigos

2006 ◽  
Vol 84 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Nidia León-Sicairos ◽  
Magda Reyes-López ◽  
Cynthia Ordaz-Pichardo ◽  
Mireya de la Garza

Lactoferrin (Lf), in its iron-free form, has been shown to inhibit the growth of pathogenic microorganisms. In the light of new agents to control amoebiasis, the microbicidal activity of human and bovine Lf and bovine lactoferricin (bLfcin, fragment 4–14), and of each combined with metronidazole, the main drug used in amoebiasis, was evaluated in trophozoites of Entamoeba histolytica. Both lactoferrins and bLfcin were able to kill amoebas in a concentration-dependent manner. This killing effect was modulated according to the culture age, pH, and temperature. Parasites obtained from the stationary phase were more susceptible to Lf than those from the early exponential phase. The effect of Lf and its derived peptide, bLfcin, was prevented by both Fe2+and Fe3+. However, the divalent cations Mg2+and Ca2+prevented the killing effect of Lf but not of bLfcin. A synergistic amoebicidal effect was found between metronidazole and human Lf, bovine Lf, or bLfcin. These data suggest that Lf and bLfcin might be used in amoebiasis if they are administered with a low dose of metronidazole to diminish the toxicity of this drug. Thus, Lf and bLfcin are therapeutically potential candidates for use as antiamoebics in patients.


Sign in / Sign up

Export Citation Format

Share Document