scholarly journals Optimizing the spatial scale for neighborhood environment characteristics using fine-grained data

Author(s):  
Junyi Cheng ◽  
Xianfeng Zhang ◽  
Jie Huang
2021 ◽  
Vol 13 (5) ◽  
pp. 979
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
José Manuel Fernández-Guisuraga ◽  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
...  

Heterogeneous and patchy landscapes where vegetation and abiotic factors vary at small spatial scale (fine-grained landscapes) represent a challenge for habitat diversity mapping using remote sensing imagery. In this context, techniques of spectral mixture analysis may have an advantage over traditional methods of land cover classification because they allow to decompose the spectral signature of a mixed pixel into several endmembers and their respective abundances. In this work, we present the application of Multiple Endmember Spectral Mixture Analysis (MESMA) to quantify habitat diversity and assess the compositional turnover at different spatial scales in the fine-grained landscapes of the Cantabrian Mountains (northwestern Iberian Peninsula). A Landsat-8 OLI scene and high-resolution orthophotographs (25 cm) were used to build a region-specific spectral library of the main types of habitats in this region (arboreal vegetation; shrubby vegetation; herbaceous vegetation; rocks–soil and water bodies). We optimized the spectral library with the Iterative Endmember Selection (IES) method and we applied MESMA to unmix the Landsat scene into five fraction images representing the five defined habitats (root mean square error, RMSE ≤ 0.025 in 99.45% of the pixels). The fraction images were validated by linear regressions using 250 reference plots from the orthophotographs and then used to calculate habitat diversity at the pixel (α-diversity: 30 × 30 m), landscape (γ-diversity: 1 × 1 km) and regional (ε-diversity: 110 × 33 km) scales and the compositional turnover (β- and δ-diversity) according to Simpson’s diversity index. Richness and evenness were also computed. Results showed that fraction images were highly related to reference data (R2 ≥ 0.73 and RMSE ≤ 0.18). In general, our findings indicated that habitat diversity was highly dependent on the spatial scale, with values for the Simpson index ranging from 0.20 ± 0.22 for α-diversity to 0.60 ± 0.09 for γ-diversity and 0.72 ± 0.11 for ε-diversity. Accordingly, we found β-diversity to be higher than δ-diversity. This work contributes to advance in the estimation of ecological diversity in complex landscapes, showing the potential of MESMA to quantify habitat diversity in a comprehensive way using Landsat imagery.


2020 ◽  
pp. jech-2020-215188
Author(s):  
Christopher W N Saville

BackgroundSocial capital may be a social good in health terms, but it is not necessarily a universal good. Several studies have shown that while there is a positive association between ecological social capital and health in people with high individual-level social capital, this relationship is weaker or even reversed in those with low individual-level social capital. Such studies, however, have used relatively coarse levels of geography for quantifying ecological social capital. The present study looks at this relationship at a more fine-grained spatial scale.MethodsData from the National Survey for Wales (n=27 828, weighted mean age=48.4) were linked to previously published small-area estimates (n=410) of ecological social capital for Wales. Mixed effects models were then used to assess whether the relationship between mental well-being and self-reported health on one hand, and ecological social capital (sense of belonging) on the other, was moderated by individual-level social capital.ResultsThe models found the same moderation of the relationship that has been demonstrated previously: Although ecological social capital is positively associated with health in respondents with high individual-level social capital, the relationship is negative in those with low individual-level social capital.ConclusionThis study replicates this association at a spatial scale orders of magnitude more fine-grained than had been shown previously. Ecological social capital is not an unambiguously positive factor for public health, and may be a risk factor for marginalised people.


2020 ◽  
Author(s):  
Samuel Langton ◽  
Wouter Steenbeek ◽  
Monsuru Adepeju

Objectives: This paper disentangles the degree of concentration and variance in offender residences across different levels of spatial aggregation. Three nested units are analysed simultaneously (and longitudinally) to explore the impact of using different spatial scales, opening prospect for a comparison with existing findings from crime concentration literature. Methods: Data is utilized from West Midlands Police Force, containing the locations of residence for all known offenders in Birmingham between the years 2006 and 2016. Resident locations are aggregated to 3223 Output Areas (OA), nested within 639 Lower Super Output Areas (LSOA), further nested within 132 Middle Super Output Areas (MSOA). Descriptive and model-based statistics are deployed to replicate a recent study for crime events (Steenbeek & Weisburd, 2016). Results: In contrast to the crime concentration literature, the results indicate that most variance (~50%) in offender residence concentrations is attributable to the largest spatial scale (MSOA level). Output Areas, as the most fine-grained unit, capture approximately 39% of the variance, although this proportion increases during the study period at the expense of MSOA. Conclusions: Findings suggest that the relationship between variance and scale when studying offender residences is not as clear-cut as it is for crimes. Larger units hold some merit (empirically and theoretically), but this is time-dependent, opening up discussions on the role of urban development in determining the appropriateness of spatial scale.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Sign in / Sign up

Export Citation Format

Share Document