stochastic pooling
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Utpal Nandi ◽  
Anudyuti Ghorai ◽  
Moirangthem Marjit Singh ◽  
Chiranjit Changdar ◽  
Shubhankar Bhakta ◽  
...  

2022 ◽  
Vol 70 (2) ◽  
pp. 3081-3097
Author(s):  
Shui-Hua Wang ◽  
Muhammad Attique Khan ◽  
Yu-Dong Zhang

STEMedicine ◽  
2021 ◽  
Vol 2 (8) ◽  
pp. e101
Author(s):  
Jian Wang ◽  
Dimas Lima

Multiple sclerosis is one of most widespread autoimmune neuroinflammatory diseases which mainly damages body function such as movement, sensation, and vision. Despite of conventional clinical presentation, brain magnetic resonance imaging of white matter lesions is often applied to diagnose multiple sclerosis at the early stage. In this article, we proposed a 6-layer stochastic pooling convolutional neural network with multiple-way data augmentation for multiple sclerosis detection in brain MRI images. Our approach does not demand hand-crafted features unlike those traditional machine learning methods. Via application of stochastic pooling and multiple-way data augmentation, our 6-layer CNN achieved equivalent performance against those deep learning methods which consist of so many layers and parameters that ordinarily bring difficulty to training. The results showed that this 6-layer CNN obtained a sensitivity of 95.98±0.46%, a specificity of 95.67±0.92%, and an accuracy of 95.82±0.58%. According to comparison experiments, our results are better than state-of-the-art approaches. Further, we also conducted ablation experiments to examine the contribution of stochastic pooling and multiple-way data augmentation to the original CNN model. The contrast experiments revealed that our scheme of stochastic pooling and multiple-way data augmentation enhanced the original 6-layer CNN model compared to those using maximum pooling or average pooling and inadequate data augmentation.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shui-Hua Wang ◽  
Kaihong Wu ◽  
Tianshu Chu ◽  
Steven L. Fernandes ◽  
Qinghua Zhou ◽  
...  

Aim. This study proposes a new artificial intelligence model based on cardiovascular computed tomography for more efficient and precise recognition of Tetralogy of Fallot (TOF). Methods. Our model is a structurally optimized stochastic pooling convolutional neural network (SOSPCNN), which combines stochastic pooling, structural optimization, and convolutional neural network. In addition, multiple-way data augmentation is used to overcome overfitting. Grad-CAM is employed to provide explainability to the proposed SOSPCNN model. Meanwhile, both desktop and web apps are developed based on this SOSPCNN model. Results. The results on ten runs of 10-fold crossvalidation show that our SOSPCNN model yields a sensitivity of 92.25 ± 2.19 , a specificity of 92.75 ± 2.49 , a precision of 92.79 ± 2.29 , an accuracy of 92.50 ± 1.18 , an F1 score of 92.48 ± 1.17 , an MCC of 85.06 ± 2.38 , an FMI of 92.50 ± 1.17 , and an AUC of 0.9587. Conclusion. The SOSPCNN method performed better than three state-of-the-art TOF recognition approaches.


2021 ◽  
Vol 7 (30) ◽  
pp. eabi9410
Author(s):  
J. Agustin Cruz ◽  
Chaitanya S. Mokashi ◽  
Gabriel J. Kowalczyk ◽  
Yue Guo ◽  
Qiuhong Zhang ◽  
...  

A myriad of inflammatory cytokines regulate signaling pathways to maintain cellular homeostasis. The IκB kinase (IKK) complex is an integration hub for cytokines that govern nuclear factor κB (NF-κB) signaling. In response to inflammation, IKK is activated through recruitment to receptor-associated protein assemblies. How and what information IKK complexes transmit about the milieu are open questions. Here, we track dynamics of IKK complexes and nuclear NF-κB to identify upstream signaling features that determine same-cell responses. Experiments and modeling of single complexes reveal their size, number, and timing relays cytokine-specific control over shared signaling mechanisms with feedback regulation that is independent of transcription. Our results provide evidence for variable-gain stochastic pooling, a noise-reducing motif that enables cytokine-specific regulation and parsimonious information transfer. We propose that emergent properties of stochastic pooling are general principles of receptor signaling that have evolved for constructive information transmission in noisy molecular environments.


2021 ◽  
Vol 145 ◽  
pp. 110800
Author(s):  
Wenyue Zhang ◽  
Peiming Shi ◽  
Mengdi Li ◽  
Dongying Han

2021 ◽  
Author(s):  
J. Agustin Cruz ◽  
Chaitanya S. Mokashi ◽  
Gabriel J. Kowalczyk ◽  
Yue Guo ◽  
Qiuhong Zhang ◽  
...  

A myriad of inflammatory cytokines regulate signaling pathways to maintain cellular homeostasis. The IKK complex is an integration hub for cytokines that govern NF-κB signaling. In response to inflammation, IKK is activated through recruitment to receptor-associated protein assemblies. How and what information IKK complexes transmit about the milieu are open questions. Here we track dynamics of IKK complexes and nuclear NF-κB to identify upstream signaling features that determine same-cell responses. Experiments and modeling of single complexes reveal their size, number, and timing relays cytokine-specific control over shared signaling mechanisms with feedback regulation that is independent of transcription. Our results provide evidence for variable gain stochastic pooling, a noise-reducing motif that enables cytokine-specific regulation and parsimonious information transfer. We propose that emergent properties of stochastic pooling are general principles of receptor signaling that have evolved for constructive information transmission in noisy molecular environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shui-Hua Wang ◽  
Yin Zhang ◽  
Xiaochun Cheng ◽  
Xin Zhang ◽  
Yu-Dong Zhang

Aim. COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment. Methods. In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary tuberculosis, community-captured pneumonia, and healthy subjects. PSSPNN entails five improvements: we first proposed the n-conv stochastic pooling module. Second, a novel stochastic pooling neural network was proposed. Third, PatchShuffle was introduced as a regularization term. Fourth, an improved multiple-way data augmentation was used. Fifth, Grad-CAM was utilized to interpret our AI model. Results. The 10 runs with random seed on the test set showed our algorithm achieved a microaveraged F1 score of 95.79%. Moreover, our method is better than nine state-of-the-art approaches. Conclusion. This proposed PSSPNN will help assist radiologists to make diagnosis more quickly and accurately on COVID-19 cases.


Sign in / Sign up

Export Citation Format

Share Document