Foliar nutrient resorption dynamics of trembling aspen and white birch during secondary succession in the boreal forest of central Canada

2021 ◽  
pp. 119876
Author(s):  
Xinli Chen ◽  
Han Y.H. Chen
2010 ◽  
Vol 67 (7) ◽  
pp. 710-710 ◽  
Author(s):  
Bradley D. Pinno ◽  
Scott D. Wilson ◽  
Diego F. Steinaker ◽  
Ken C. J. Rees ◽  
Shawn A. McDonald

2016 ◽  
Vol 369 ◽  
pp. 1-9 ◽  
Author(s):  
Alexandra Hume ◽  
Han Y.H. Chen ◽  
Anthony R. Taylor ◽  
Gordon J. Kayahara ◽  
Rongzhou Man

Ecology ◽  
1992 ◽  
Vol 73 (5) ◽  
pp. 1868-1878 ◽  
Author(s):  
Jeffrey D. May ◽  
Keith T. Killingbeck

2018 ◽  
Vol 27 (7) ◽  
pp. 875-885 ◽  
Author(s):  
Hai-Yang Zhang ◽  
Xiao-Tao Lü ◽  
Henrik Hartmann ◽  
Adrienne Keller ◽  
Xing-Guo Han ◽  
...  

1981 ◽  
Vol 57 (4) ◽  
pp. 169-173 ◽  
Author(s):  
I. S. Alemdag ◽  
K. W. Horton

Ovendry mass of single trees of trembling aspen, largetooth aspen, and white birch in the Great Lakes — St. Lawrence and Boreal forest regions in Ontario was studied in relation to stem dimensions. Mass equations for tree components based on diameter at breast height outside bark and tree height were developed. Results were found more dependable for stem wood and the whole tree than for stem bark, live branches, and twigs plus leaves. Ovendry mass values were slightly higher than those reported for New York and northern Minnesota.


2020 ◽  
Vol 102 ◽  
pp. 103505 ◽  
Author(s):  
Lei Li ◽  
Xiangyi Li ◽  
Bo Liu ◽  
Jiaqiang Lei ◽  
Zewei Yue ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lilong Wang ◽  
Xinfang Zhang ◽  
Shijian Xu

Abstract Background Soil salinity is a major abiotic constraint to plant growth and development in the arid and semi-arid regions of the world. However, the influence of soil salinity on the process of nutrient resorption is not well known. We measured the pools of both mature and senesced leaf nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) of desert plants from two types of habitats with contrasting degrees of soil salinity in a hyper-arid environment of northwest China. Results N, P, K revealed strict resorption, whereas Na accumulated in senesced leaves. The resorption efficiencies of N, P, and K were positively correlated with each other but not with Na accumulation. The degree of leaf succulence drives both intra-and interspecific variation in leaf Na concentration rather than soil salinity. Both community- and species-level leaf nutrient resorption efficiencies (N, P, K) did not differ between the different habitats, suggesting that soil salinity played a weak role in influencing foliar nutrients resorption. Conclusions Our results suggest that plants in hyper-arid saline environments exhibit strict salt ion regulation strategies to cope with drought and ion toxicity and meanwhile ensure the process of nutrient resorption is not affected by salinity.


2010 ◽  
Vol 40 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Xavier Cavard ◽  
Yves Bergeron ◽  
Han Y.H. Chen ◽  
David Paré

This study investigates the potential of mixed forest stands as better aboveground carbon sinks than pure stands. According to the facilitation and niche complementarity hypotheses, we predict higher carbon sequestration in mature boreal mixedwoods. Aboveground carbon contents of black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.) and trembling aspen ( Populus tremuloides Michx.) mixtures were investigated in the eastern boreal forest, whereas jack pine ( Pinus banksiana Lamb.) and trembling aspen were used in the central boreal forest. No carbon gain was found in species mixtures; nearly pure trembling aspen stands contained the greatest amount of aboveground carbon, black spruce stands had the least, and mixtures were intermediate with amounts that could generally be predicted by linear interpolation with stem proportions. These results suggest that for aspen, the potentially detrimental effect of spruce on soils observed in other studies may be offset by greater light availability in mixtures. On the other hand, for black spruce, the potentially beneficial effects of aspen on soils could be offset by greater competition by aspen for nutrients and light. The mixture of jack pine and trembling aspen did not benefit any of these species while inducing a loss in trembling aspen carbon at the stand level.


1998 ◽  
Vol 28 (12) ◽  
pp. 1743-1755 ◽  
Author(s):  
Han YH Chen ◽  
Karel Klinka ◽  
Richard D Kabzems

To examine the relationships between trembling aspen (Populus tremuloides Michx.) productivity, environmental attributes, and foliar nutrients and to make accurate predictions of trembling aspen productivity, we sampled 60 naturally established, fire-originated, and even-aged trembling aspen stands in northern British Columbia. Trembling aspen site index significantly varied with latitude, elevation, aspect, slope position, edatopes, some forest floor and mineral soil physical and chemical properties, and concentrations of some foliar nutrients. To predict site index, we developed multiple linear regression models using climatic variables, topographic properties, edatopes, soil physical and chemical properties, or foliar nutrients as predictors. Model accountability for variation of site index differed in decreasing order from soil model, climatic model, forest floor model, foliar nutrient model, edatope model, topographic model, to mineral soil model. Examined by the test data set, all models were unbiased, but they had different levels of precision in prediction in decreasing order from edatope model, soil model, forest floor model, mineral soil model, foliar nutrient model, climatic model, to topographic model. The soil and foliar nutrients models may provide insight into ecosystem processes, but the models using climatic variables and topographic properties or edatopes as predictors are recommended for predicting trembling aspen site index.


Sign in / Sign up

Export Citation Format

Share Document