scholarly journals Innovative mixed reality approach to rock mass mapping in underground mining

Author(s):  
Emre Onsel ◽  
Douglas Stead ◽  
Wayne Barnett ◽  
Luca Zorzi ◽  
A Shaban
2013 ◽  
Vol 58 (4) ◽  
pp. 1347-1357 ◽  
Author(s):  
Roman Ścigała

Abstract The characteristic of specialized computer programs has been presented, serving for identification of W. Budryk-S. Knothe theory parameters, used for description of asymptotic state of post-mining deformations, as well as for transient state. The software is the result of several years of authors’ work. It is a part of complete software system designed for forecasting of underground mining influences on the rock mass and land surface and graphical processing of calculations results. Apart from software description, a short example of its practical utilization has been attached.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Piotr MAŁKOWSKI ◽  
Zbigniew NIEDBALSKI ◽  
Łukasz BEDNAREK

Ensuring the stability of mining excavations is a crucial aspect of underground mining. For thispurpose, appropriate shapes, dimensions, and support of workings are designed for the given mining andgeological conditions. However, for the proper assessment of the adequacy of the used technical solutions,and the calibration of the models used in the support design, it is necessary to monitor the behavior of theexcavation. It should apply to the rock mass and the support. The paper presents the automatic systemdesigned for underground workings monitoring, and the example of its use in the heading. Electronicdevices that measure the rock mass movements in the roof, the load on the standing support, and on bolts,the stress in the rock mass, are connected to the datalogger and can collect data for a long of time withoutany maintenance, also in hard-to-reach places. This feature enables the system to be widely used, inparticular, in excavations in the vicinity of exploitation, goafs, or in the area of a liquidated exploitationfield.


2021 ◽  
Vol 1 ◽  
pp. 17-24
Author(s):  
Abdessattar LAMAMRA ◽  
◽  
Dmitriy Leonidovich NEGURITSA ◽  
Samir BEDR ◽  
Ariant A. REKA ◽  
...  

Reserch relaevance. Most ground movements are generally due to rock instability, this natural phenomenon poses a risk to humanity. The properties of the rock mass directly influence the type of movement especially in underground structures. Research aim. Our goal is to characterize and classify the rock mass of diatomite from the sig mine using geomechanical classification systems such as the RQD and RMR in order to determine the quality of the rocks in the sig mine Western Algeria from the determination of the physical and mechanical properties. Methodology. In this article, the characterization analysis of the diatomite rock mass of the sig mine was carried out. First, determinations of the physical properties and carried out the triaxial test to determine the mechanical properties (young’s modulus, the friction angle, the dilatancy angle, the cohesion, the poisson’s ratio). Secondly to classify the deposit and give a recommendation to avoid stability problems. Research results. The results from physical and mechanical analyzes, it can be said that the nature of the rock present in the diatomite (underground mine) does not have enough resistance. Conclusion. Our study definitively proves that the rock mass of sig diatomite is of very low quality and it will be very dangerous for the underground mining work of the mine especially in places where the mineralized layer is very deep. And we suggest to replace the mining technique room and pillar currently used in the diatomite mine and put another mining method which includes roof support system to ensure the safety both of the miners and the equipment.


Author(s):  
V.N. Tyupin ◽  

At present, to ensure seismic safety in massive explosions, the analytical dependence of the determination of the vibration velocity of M.A. Sadovsky rock mass is mainly used. This dependence is widely used in the creation of seismic-safe technologies for mineral deposits open-pit and underground mining. However, scientific research and production experience showed that the rate of oscillation depends on the energy parameters of the explosive, the diameter and length of its charges, the number of simultaneously exploded charges, the number of deceleration stages, the deceleration interval, etc. The purpose of this article is to predict the speed fluctuations of the massif on the earth surface when conducting the underground explosions depending on the parameters of large-scale explosions and physical-technical properties of the rock masses in the areas of explosion of the protected object. The formulas for calculating the velocity of rock mass on the earth surface during large-scale explosions in the underground conditions are substantiated and presented. The formulas were used for calculating the vibration velocities of the rock mass on the earth surface in accordance with the parameters of drilling and blasting operations during large-scale explosions in the mines of GK VostGOK. Comparison of theoretical (calculated) data and the results of actual measurements indicates their convergence. By changing the controlled parameters in the calculation formulas, it is possible to quantitatively reduce the seismic effect of a large-scale explosions on the protected objects. Further research will be aimed at studying the influence of tectonic faults, artificial contour crevices, filling massif or mined-out space on the rate of seismic-explosive vibrations during blasting operations in the mines. The research results can be used in the preparation of rules for conducting large-scale explosions at the underground mining.


2013 ◽  
Vol 807-809 ◽  
pp. 2332-2339
Author(s):  
Qiang Wang ◽  
Jin Yu Chen

One of the difficult issues in underground mining is the ground control of roadway subject to mining induced stresses. As a longwall face advances, the state of initial stresses dramatically changes. Accordingly, lateral abutment pressure forms on the pillar and frontal abutment pressure on the roof and lateral sides of the roadway. These pressures will lead to severe deformation and deterioration of the rock mass surrounding the entries. In this paper, a systemic study on this issue is proposed using the combination of numerical modeling and in-situ monitoring which was carried out at a coal mine in the Lu.An Group, China. The condition of stress redistribution caused by mining-induced stresses and the state of the surrounding rock mass of the roadway situated in front the work face are systematically investigated. Different patterns of support and reinforcement as well as their effects on the stability of the roadway are also presented.


2016 ◽  
Vol 34 (3) ◽  
pp. 847-866 ◽  
Author(s):  
Chuanbo Zhou ◽  
Shiwei Lu ◽  
Nan Jiang ◽  
Dingbang Zhang ◽  
Zhihua Zhang ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 82 ◽  
Author(s):  
Andrej Pal ◽  
Janez Rošer ◽  
Milivoj Vulić

Impacts of underground mining have been reduced by continuous environmental endeavors, scientific, and engineering research activities, whose main object is the behavior and control of the undermined rock mass and the subsequent surface subsidence. In the presented Velenje case of underground sublevel longwall mining where coal is being exploited both horizontal and vertical, backfilling processes and accompanying fracturing in the coal layer, and rock mass are causing uncontrolled subsidence of the surface above. 3D point clouds of the study were acquired in ten epochs and at excavation heights on the front were measured at the same epochs. By establishing a sectors layout in the observational area, smaller point clouds were obtained, to which planes were fitted and centroids of these planes then calculated. Centroid heights were analyzed with the FNSE model to estimate the time of consolidation and modified according to excavation parameters to determine total subsidence after a certain period. Proposed prognosis approaches for estimating consolidation of active subsidence and long term surface environmental protection measures have been proposed and presented. The C2C analysis of distances between acquired 3D point clouds was used for identification of surface subsidence, reclamation areas and sink holes, and for validation of feasibility and effectiveness of the proposed prognosis.


Sign in / Sign up

Export Citation Format

Share Document