Comparison of Z-Factor Correlations Using a Large PVT Dataset with Emphasis on the GERG-2008 EOS

2021 ◽  
Author(s):  
Kristian Mogensen ◽  
Robert Merrill

Abstract The gas compressibility factor is an important property in reservoir simulation studies. It is directly linked to the gas formation volume factor and the gas density thereby impacting wellhead injection pressure, reservoir voidage, injectivity, as well as the tendency for gas gravity override to occur in the reservoir. ADNOC's PVT database contains experiments on almost 2,000 samples, of which more than 100 have been subject to advanced gas injection experiments. Z-factor data have been compiled from the liberated gas during DV experiments as well as from CCE experiments on reservoir gases, injection gases, and swollen fluid mixtures. Several of these mixtures are very rich in H2S, whereas pressure and temperature are in the range of 14.7-14,500 psia and 80-365 °F, respectively. We test several different methods for predicting the Z-factor, such as the industry-standard Hall-Yarborough method, in combination with various models for pseudo-critical pressure and temperature and including correction for non-hydrocarbon components. Other methods tested include the GERG-2008 model, considered to be state-of-the-art for predicting physical properties for well-described gas mixtures, as well as the well-known Peng-Robinson cubic equation of state. Based on close to 10,000 data points in our database, the GERG-2008 model typically predicts the Z-factor to be within 2% of the measured value, which is on par with the experimental uncertainty. However, for some rich gas condensate mixtures, the model gives larger errors because its parameters are only tuned to compositions with components up to C10. This is to our knowledge the first time that the GERG-2008 EOS has been compared to standard Z-factor correlations for such a large number of data points. If compositional information is available, we recommend using either the GERG-2008 model or the Hall-Yarborough model with pseudo-critical properties provided by Kay (1936). When compositions are not available, we find that the Standing correlation is more accurate than the Sutton model, also for sour mixtures.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Mohamed Mahmoud

Gas compressibility factor or Z-factor for natural gas system can be determined from Standing-Katz charts using the pseudocritical gas pressure and temperatures. These charts give accurate values for Z-factors. Reservoir simulation softwares need accurate correlations to estimate the values of Z-factor; one of the well-known correlations is Dranchuk and Abou-Kassem (DAK) Correlation. This correlation gives large errors at high gas reservoir pressures, this error could be more than 100%. The error in estimating Z-factor will lead to big error in estimating all the other gas properties such as gas formation volume factor, gas compressibility, and gas in place. In this paper a new accurate Z-factor correlation has been developed using regression for more than 300 data points of measured Z-factor using matlab in addition to other data points at low pressure and temperature from Standing-Katz charts and DAK correlation. Old correlations give good estimation of Z-factor at low gas reservoir pressures below 41.37 MPa (6000 psia), at high pressures the error started to appear. The developed correlation is a function of pseudoreduced pressure and temperature of the gas which makes it simpler than the existing complicated correlations. The new correlation can be used to determine the gas compressibility factor at any pressure range especially for high pressures the error was less than 3% compared to the measured data. The developed correlation is very simple to be used, it just needs the gas specific gravity that can be used to determine the pseudocritical properties of the gas and at last the Z-factor can be determined. A new formula of reduced gas compressibility was developed based on the developed Z-factor correlation which in turn can be used to determine the gas compressibility.


2021 ◽  
Author(s):  
Oluwasegun Cornelious Omobolanle ◽  
Oluwatoyin Olakunle Akinsete

Abstract Accurate prediction of gas compressibility factor is essential for the evaluation of gas reserves, custody transfer and design of surface equipment. Gas compressibility factor (Z) also known as gas deviation factor can be evaluated by experimental measurement, equation of state and empirical correlation. However, these methods have been known to be expensive, complex and of limited accuracy owing to the varying operating conditions and the presence of non-hydrocarbon components in the gas stream. Recently, newer correlations with extensive application over wider range of operating conditions and crude mixtures have been developed. Also, artificial intelligence is now being deployed in the evaluation of gas compressibility factor. There is therefore a need for a holistic understanding of gas compressibility factor vis-a-vis the cause-effect relations of deviation. This paper presents a critical review of current understanding and recent efforts in the estimation of gas deviation factor.


2016 ◽  
Vol 37 (2) ◽  
pp. 161-173 ◽  
Author(s):  
Jolanta B. Królczyk

Abstract Mixing of granular materials is unquestionably important. Mixing solids is common in industrial applications and frequently represents a critical stage of the processes. The effect of mixing determines the quality of the products. Achieving a gas or liquid mixture ideally homogeneous in terms of composition in the case of dissolving components is not that difficult, while in case of granular materials that usually differ in sizes and densities, obtaining a homogenous mixture is practically impossible. The aim of the paper is to present the kinetics of mixing of a multicomponent, nonhomogeneous granular mixture. For the first time in mixing of granular materials, a reference has been made to the terminology used in kinematics of fluid mixtures to determine the state of the mixture: turbulent or laminar. By means of statistical analysis the mixing process was divided into two stages. The initial phase of the process was called the stage of turbulent changes, due to large differences in the quality of the observed mixtures; the final step of the process was called the stage of laminar, stable changes, where further mixing did not result in a significant improvement in quality. The research was conducted in industrial conditions in a two-tonne mixer.


2012 ◽  
Vol 229-231 ◽  
pp. 819-823
Author(s):  
Shi Ze Huang ◽  
Qi Yi Guo ◽  
Jing Tai Hu ◽  
Min Juan Zhang ◽  
Ya Jie He

After introducing the new low-voltage protective electrical apparatus—Control and Protective Switching Device (CPS), there came to the importance and social benefits of its reliability. According to the study on CPS’s operation characteristics and failure modes, along with the current national standard and related industry standard, the two reliability indexes were proposed to measure CPS’s reliability for the first time, and the reliability compliance test plans were also provided. All the study did provide a reference for the reliability research work of CPS.


1973 ◽  
Vol 27 (4) ◽  
pp. 279-284 ◽  
Author(s):  
Richard J. DeSa ◽  
John E. Wampler

A uv-visible recording spectrophotometer has been developed which uses an on-line general purpose digital computer and the optical train of a conventional double beam recording spectrophotometer. The computer controls all functions of the instrument and permits the collection and manipulation of high quality absorption spectra without the use of electronic or optical correction devices. Spectra are represented by a series of up to 500 individual data points. Spectra can be manipulated in a variety of ways to meet particular experimental situations and can be displayed or plotted on an arbitrary absorbance scale. A spectrum can be added to, or substracted from, any other spectrum, differentiated, converted to log absorbance, or multiplied by an arbitrary factor. Data can be preserved on paper tape or presented graphically as a high quality labeled plot of variable size on either a wave-length or a wave number scale. The complete system can scan a full spectrum at a maximum rate of 30 nm/sec over any part of a range from 230 to 700 nm. Details of the system are presented with examples of its performance.


Author(s):  
Xiaocui Tian ◽  
Xiaokai Xing ◽  
Rui Chen ◽  
Shubao Pang ◽  
Liu Yang

In the custody transfer metering of natural gas, it’s necessary to transform gas volume from metering state into standard state. Natural gas is non-ideal gas, and its compressibility factor varies with different components, temperature and pressure. So the accuracy of its calculation has direct impact on that of natural gas metering, and then affects the economic benefits of the enterprise [1]. According to related standard of China, in the custody transfer metering of natural gas, the formula stipulated by AGA NO.8 should be adopted to calculate compressibility factor. But the components of natural gas must be monitored at all times when this method is used, and the calculation process is complicated. In practical operation of natural gas trade, compressibility factor changes because of frequent adjustment of pipeline operating conditions. In order to simplify the calculation, simplified formula is applied to calculate compressibility factor generally, but it’s difficult to guarantee the accuracy at the same time. In this paper, the simplified formula, which is used for calculating natural gas compressibility factor of a joint-stock natural gas pipeline of CNPC, is modified with the standard formula stipulated by AGA NO.8. After the modification, an empirical formula of compressibility factor calculation applicable to this pipeline system is proposed, whereby the accuracy of compressibility factor calculation is improved. When the modified one is applied to natural gas trade, the accuracy of metering is improved likewise.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8242
Author(s):  
Raoul R. Nigmatullin ◽  
Vadim S. Alexandrov

In the first time we apply the statistics of the complex moments for selection of an optimal pressure sensor (from the available set of sensors) based on their statistical/correlation characteristics. The complex moments contain additional source of information and, therefore, they can realize the comparison of random sequences registered for almost identical devices or gadgets. The proposed general algorithm allows to calculate 12 key correlation parameters in the significance space. These correlation parameters allow to realize the desired comparison. New algorithm is rather general and can be applied for a set of other data if they are presented in the form of rectangle matrices. Each matrix contains N data points and M columns that are connected with repetitious cycle of measurements. In addition, we want to underline that the value of correlations evaluated with the help of Pearson correlation coefficient (PCC) has a relative character. One can introduce also external correlations based on the statistics of the fractional/complex moments that form a complete picture of correlations. To the PCC value of internal correlations one can add at least 7 additional external correlators evaluated in the space of fractional and complex moments in order to realize the justified choice. We do suppose that the proposed algorithm (containing an additional source of information in the complex space) can find a wide application in treatment of different data, where it is necessary to select the “best sensors/chips” based on their measured data, presented usually in the form of random rectangle matrices.


Sign in / Sign up

Export Citation Format

Share Document