indian tea
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 39)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Jeyaraman Mareeswaran

Abstract Branch canker disease caused by the fungus Macrophoma theicola is a major stem disease that reduces the yield of south Indian tea plantations. Hence the present study aimed to assess the efficacy of the biocontrol agent Trichoderma spp against various isolates of Macrophoma spp. For this matter, different tea-growing regions of south India were surveyed for the isolation and characterization of Macrophoma spp. Then, fungal biocontrol strains (Trichoderma viride, Trichoderma atroviride, Trichoderma harzianum, and Gliocladium virens) were procured from microbial type culture collection Centre (MTCC) to screen their antagonistic potential on different isolates Macrophoma spp. The spores of Macrophoma spp were examined through a light microscope and identified by their peculiar morphological features such as non-septum pycnidiospores present in the sac and oval shape spore with stalk and confirmed using 18S rRNA gene sequence. The results revealed that the biocontrol G. virens followed by T. harzianum showed a higher inhibitory effect on different isolates of Macrophoma spp in the dual plate and culture filtrate studies. In the well diffusion method, the fungal biocontrol agents were found to be exhibit non-significant differences on different isolates of branch canker pathogen. The hyphal interactions studies showed that the pathogenic hyphal wall shrunk and penetrated by the interaction of G. virens.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Li Li ◽  
Yunfei Hu ◽  
Min He ◽  
Bo Zhang ◽  
Wei Wu ◽  
...  

Abstract Background Chloroplast genome resources can provide useful information for the evolution of plant species. Tea plant (Camellia sinensis) is among the most economically valuable member of Camellia. Here, we determined the chloroplast genome of the first natural triploid Chinary type tea (‘Wuyi narcissus’ cultivar of Camellia sinensis var. sinensis, CWN) and conducted the genome comparison with the diploid Chinary type tea (Camellia sinensis var. sinensis, CSS) and two types of diploid Assamica type teas (Camellia sinensis var. assamica: Chinese Assamica type tea, CSA and Indian Assamica type tea, CIA). Further, the evolutionary mechanism of the chloroplast genome of Camellia sinensis and the relationships of Camellia species based on chloroplast genome were discussed. Results Comparative analysis showed the evolutionary dynamics of chloroplast genome of Camellia sinensis were the repeats and insertion-deletions (indels), and distribution of the repeats, indels and substitutions were significantly correlated. Chinese tea and Indian tea had significant differences in the structural characteristic and the codon usage of the chloroplast genome. Analysis of sequence characterized amplified region (SCAR) using sequences of the intergenic spacers (trnE/trnT) showed none of 292 different Camellia sinensis cultivars had similar sequence characteristic to triploid CWN, but the other four Camellia species did. Estimations of the divergence time showed that CIA diverged from the common ancestor of two Assamica type teas about 6.2 Mya (CI: 4.4–8.1 Mya). CSS and CSA diverged to each other about 0.8 Mya (CI: 0.4–1.5 Mya). Moreover, phylogenetic clustering was not exactly consistent with the current taxonomy of Camellia. Conclusions The repeat-induced and indel-induced mutations were two important dynamics contributed to the diversification of the chloroplast genome in Camellia sinensis, which were not mutually exclusive. Chinese tea and Indian tea might have undergone different selection pressures. Chloroplast transfer occurred during the polyploid evolution in Camellia sinensis. In addition, our results supported the three different domestication origins of Chinary type tea, Chinese Assamica type tea and Indian Assamica type tea. And, the current classification of some Camellia species might need to be further discussed.


2021 ◽  
Author(s):  
LI li ◽  
Yunfei Hu ◽  
Min He ◽  
Bo Zhang ◽  
Wei Wu ◽  
...  

Abstract Background: Chloroplast genome resources can provide useful information for the evolution of plant species. Tea plant (Camellia sinensis) is among the most economically valuable member of Camellia. Here, we determined the chloroplast genome of the first natural triploid Chinary type tea (‘Wuyi narcissus’ cultivar of Camellia sinensis var. sinensis, CWN) and conducted the genome comparison with the diploid Chinary type tea (Camellia sinensis var. sinensis, CSS) and two types of diploid Assamica type teas (Camellia sinensis var. assamica: Chinese Assamica type tea, CSA and Indian Assamica type tea, CIA). Further, the evolutionary mechanism of the chloroplast genome of Camellia sinensis and the relationships of Camellia species based on chloroplast genome were discussed.Results: Comparative analysis showed the evolutionary dynamics of chloroplast genome of Camellia sinensis were the repeats and insertion-deletions (indels), and distribution of the repeats, indels and substitutions were significantly correlated. Chinese tea and Indian tea had significant differences in the structural characteristic and the codon usage of the chloroplast genome. Analysis of sequence characterized amplified region (SCAR) using sequences of the intergenic spacers (trnE/trnT) showed none of 292 different Camellia sinensis cultivars had similar sequence characteristic to triploid CWN, but the other four Camellia species did. Estimations of the divergence time showed that CIA diverged from the common ancestor of two Assamica type teas about 6.2 Mya (CI: 4.4-8.1 Mya). CSS and CSA diverged to each other about 0.8 Mya (CI: 0.4-1.5 Mya). Moreover, phylogenetic clustering was not exactly consistent with the current taxonomy of Camellia.Conclusions: The repeat-induced and indel-induced mutations were two important dynamics contributed to the diversification of the chloroplast genome in Camellia sinensis, which were not mutually exclusive. Chinese tea and Indian tea might have undergone different selection pressures. Chloroplast transfer occurred during the polyploid evolution in Camellia sinensis. In addition, our results supported the three different domestication origins of Chinary type tea, Chinese Assamica type tea and Indian Assamica type tea. And, the current classification of some Camellia species might need to be further discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hukam C. Rawal ◽  
Sangeeta Borchetia ◽  
Biswajit Bera ◽  
S. Soundararajan ◽  
R. Victor J. Ilango ◽  
...  

AbstractBased upon the morphological characteristics, tea is classified botanically into 2 main types i.e. Assam and China, which are morphologically very distinct. Further, they are so easily pollinated among themselves, that a third category, Cambod type is also described. Although the general consensus of origin of tea is India, Burma and China adjoining area, yet specific origin of China and Assam type tea are not yet clear. Thus, we made an attempt to understand the origin of Indian tea through the comparative analysis of different chloroplast (cp) genomes under the Camellia genus by performing evolutionary study and comparing simple sequence repeats (SSRs) and codon usage distribution patterns among them. The Cp genome based phylogenetic analysis indicated that Indian Tea, TV1 formed a different group from that of China tea, indicating that TV1 might have undergone different domestications and hence owe different origins. The simple sequence repeats (SSRs) analysis and codon usage distribution patterns also supported the clustering order in the cp genome based phylogenetic tree.


2021 ◽  
Vol 57 (9) ◽  
pp. 6066-6076
Author(s):  
Dr. Gayathri Band, Dr. Neeta V Sahh, CA (Dr). Manish N Shah, Prof. Jyoti Samseriya

Tea has played a role in almost all cultures and customs. The Indian Tea Industry is about 176 years old. Satisfying customers’ wishes is a challenge for many companies in the today’s rapidly changing and keenly competitive environment in today’s Tea industry. In this experiment with, seven product attributes of tea where each attribute has three performance levels have been designed for conjoint analysis. The first influencing factor is the preference of the type of tea where packaged tea has the highest utility as it captures the maximum of Tea market in India as compared to loose or tea bags which are mostly not preferred by the consumers. As consumers are very loyal towards the Tea brand which they purchase and hence we can see the most important criterion or influencing factor while selection of tea is the Brand name followed by the family opinion as traditionally the family believes to have a good taste of tea which should act a stimulant and psychological preference and family preference does matter when purchasing a tea. The pricing is the fourth important factor influencing the choice of tea. The most preferred attributes for tea are Variety of tea should be leaf with medium pricing where selection criterion of tea is good taste and brand name influences the consumer the highest and Tea should preferably be present at all General Store Outlets and preferred convenient packaging for consumers is Carton Boxes.  


2021 ◽  
Author(s):  
LI li ◽  
Yunfei Hu ◽  
Min He ◽  
Bo Zhang ◽  
Wei Wu ◽  
...  

Abstract Background: Chloroplast genome resources can provide useful information for the evolution of plant species. Tea plant (Camellia sinensis) is among the most economically valuable member of Camellia. Here, we determined the chloroplast genome of the first natural triploid Chinary type tea (‘Wuyi narcissus’ cultivar of Camellia sinensis var. sinensis, CWN) and conducted the genome comparison with the diploid Chinary type tea (Camellia sinensis var. sinensis, CSS) and two types of diploid Assamica type teas (Camellia sinensis var. assamica: Chinese Assamica type tea, CSA and Indian Assamica type tea, CIA). Further, the evolutionary mechanism of the chloroplast genome of Camellia sinensis and the relationships of Camellia species based on chloroplast genome were discussed.Results: Comparative analysis showed the evolutionary dynamics of chloroplast genome of Camellia sinensis were the repeats and insertion-deletions (indels), and distribution of the repeats, indels and substitutions were significantly correlated. Chinese tea and Indian tea had significant differences in the structural characteristic and the codon usage of the chloroplast genome. Analysis of sequence characterized amplified region (SCAR) using sequences of the intergenic spacers (trnE/trnT) showed none of 292 different Camellia sinensis cultivars had similar sequence characteristic to triploid CWN, but the other four Camellia species did. Estimations of the divergence time showed that CIA diverged from the common ancestor of two Assamica type teas about 6.2 Mya (CI: 4.4-8.1 Mya). CSS and CSA diverged to each other about 0.8 Mya (CI: 0.4-1.5 Mya). Moreover, phylogenetic clustering was not exactly consistent with the current taxonomy of Camellia. Conclusions: The repeat-induced and indel-induced mutations were two important dynamics contributed to the diversification of the chloroplast genome in Camellia sinensis, which were not mutually exclusive. Chinese tea and Indian tea might have undergone different selection pressures. Chloroplast transfer occurred during the polyploid evolution in Camellia sinensis. In addition, our results supported the three different domestication origins of Chinary type tea, Chinese Assamica type tea and Indian Assamica type tea. And, the current classification of some Camellia species might need to be further discussed.


Sign in / Sign up

Export Citation Format

Share Document