scholarly journals Study of thermoplasmonic properties of gold nanodimer in visible -infrared region of electromagnetic spectrum

Nano Express ◽  
2021 ◽  
Author(s):  
Nilesh Kumar Pathak ◽  
Partha Sarathi

Abstract In the present study, the heat generation in gold nanodimers when irradiated at their localized surface plasmon resonances is investigated numerically. The theoretical calculations are performed employing the first principal approach to obtain the absorption cross-section of gold nanodimer for different parameter ranges. The heating mechanism is enumerated in terms of its temperature by solving the steady-state heat transfer equation which depends on the absorption cross-section and surface plasmon resonance wavelength. These surface plasmon resonances are quite sensitive to the distance between the dimer and have been tuned from visible to IR range by managing the distance between spheres from 0 to 6nm. The computation of normalized electric field distribution of gold nanodimer under the plasmon resonance has been mapped using boundary element method(BEM) which enables visualization of the local hot spot that plays a significant role in optical heating applications. The work furnishes the basic understanding of the heating mechanism of gold nanodimer which can find application as plasmonic nanoheaters in several branches of science in visible and near-infrared regions of the electromagnetic spectrum.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1429
Author(s):  
Mario Lucido

The surface plasmon resonances of a monolayer graphene disk, excited by an impinging plane wave, are studied by means of an analytical-numerical technique based on the Helmholtz decomposition and the Galerkin method. An integral equation is obtained by imposing the impedance boundary condition on the disk surface, assuming the graphene surface conductivity provided by the Kubo formalism. The problem is equivalently formulated as a set of one-dimensional integral equations for the harmonics of the surface current density. The Helmholtz decomposition of each harmonic allows for scalar unknowns in the vector Hankel transform domain. A fast-converging Fredholm second-kind matrix operator equation is achieved by selecting the eigenfunctions of the most singular part of the integral operator, reconstructing the physical behavior of the unknowns, as expansion functions in a Galerkin scheme. The surface plasmon resonance frequencies are simply individuated by the peaks of the total scattering cross-section and the absorption cross-section, which are expressed in closed form. It is shown that the surface plasmon resonance frequencies can be tuned by operating on the chemical potential of the graphene and that, for orthogonal incidence, the corresponding near field behavior resembles a cylindrical standing wave with one variation along the disk azimuth.


2019 ◽  
Vol 55 (33) ◽  
pp. 4813-4816 ◽  
Author(s):  
Xia Sun ◽  
Yu Zou ◽  
Jiang Jiang

Surface plasmon resonance excitation on Au enhances a visible light-assisted click reaction through synergistic photothermal and hot electron effects.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26216-26226 ◽  
Author(s):  
Vivek Garg ◽  
Brajendra S. Sengar ◽  
Vishnu Awasthi ◽  
Aaryashree Aaryashree ◽  
Pankaj Sharma ◽  
...  

We report a detailed correlation analysis of the size, shape, and distribution of Au nanoparticles (NPs) on fine-tuning of localized surface plasmon resonance and optical absorption cross-section.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
F. Wu ◽  
P. A. Thomas ◽  
V. G. Kravets ◽  
H. O. Arola ◽  
M. Soikkeli ◽  
...  

AbstractPlasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450201 ◽  
Author(s):  
Jie Wang ◽  
Yumin Liu ◽  
Zhongyuan Yu ◽  
Chunwei Ye ◽  
Hongbo Lv ◽  
...  

In this paper, we present the theoretical analysis on how the wavelength of the localized surface plasmon resonances of gold nanoparticle can lead shift for the resonance wavelength. In our results, we calculate the scattering cross-section, the absorption cross-section and the field enhancement due to the nanoparticle. Numerical simulation were done using the finite element method (FEM). The work that we do here is different from the previous work because we use the Bragg reflector as a substrate. The Bragg reflector has a property of high reflectivity in some certain frequency bandwidth because of its periodic structure. The coherence interference of the Bragg reflector contributes to the plasmon resonances and results in some special character for a wide variety application, from sensing to photovoltaic. The periodic number of the Bragg reflector substrate and shapes of the nanoparticles are also discussed that result in a shift of the resonance wavelength.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adi Salomon ◽  
Heiko Kollmann ◽  
Manfred Mascheck ◽  
Slawa Schmidt ◽  
Yehiam Prior ◽  
...  

Abstract Localized surface plasmon resonances of individual sub-wavelength cavities milled in metallic films can couple to each other to form a collective behavior. This coupling leads to a delocalization of the plasmon field at the film surface and drastically alters both the linear and nonlinear optical properties of the sample. In periodic arrays of nanocavities, the coupling results in the formation of propagating surface plasmon polaritons (SPP), eigenmodes extending across the array. When artificially introducing dislocations, defects and imperfections, multiple scattering of these SPP modes can lead to hot-spot formation, intense and spatially confined fluctuations of the local plasmonic field within the array. Here, we study the underlying coupling effects by probing plasmonic modes in well-defined individual triangular dimer cavities and in arrays of triangular cavities with and without artificial defects. Nonlinear confocal spectro-microscopy is employed to map the second harmonic (SH) radiation from these systems. Pronounced spatial localization of the SPP field and significant enhancements of the SH intensity in certain, randomly distributed hot spots by more than an order of magnitude are observed from the triangular arrays as compared to a bare silver film by introducing a finite degree of disorder into the array structure. Hot-spot formation and the resulting enhancement of the nonlinear efficiency are correlated with an increase in the lifetime of the localized SPP modes. By using interferometric SH autocorrelation measurements, we reveal lifetimes of hot-spot resonances in disordered arrays that are much longer than the few-femtosecond lifetimes of the localized surface plasmon resonances of individual nanocavity dimers. This suggests that hot spot lifetime engineering provides a path for manipulating the linear and nonlinear optical properties of nanosystems by jointly exploiting coherent couplings and tailored disorder.


Author(s):  
А.И. Сидоров ◽  
А.И. Сивак ◽  
Н.В. Вакула

Computer simulation of polarizability and absorption cross-section of metal (Ag, Au, Cu and Na) nanoparticles in glass far from plasmon resonance, in spectral range of 1-1.6 μm was performed. Using the example of Ag nanoparticles it is shown that in telecommunication spectral range absorption cross-section decreases by 103 times, in comparison with plasmon resonance spectral range. At the same time the polarizability decreases only by 10 times. The comparison of nanoparticles polarizabilities for mentioned materials and different geometries was performed. The prospect of metal nanoparticles application for electro-optic glasses development is shown.


Sign in / Sign up

Export Citation Format

Share Document