Deep learning spectral enhancement considering features of seismic field data
The resolution of seismic data dictates the ability to identify individual features or details in a given image, and the temporal (vertical) resolution is a function of the frequency content of a signal. To improve thin-bed resolution, broadening of the frequency spectrum is required; this has been one of the major objectives in seismic data processing. Recently, many researchers have proposed machine learning based resolution enhancement and showed their applicability. However, since the performance of machine learning depends on what the model has learned, output from training data with features different from the target field data may be poor. Thus, we present a machine learning based spectral enhancement technique considering features of seismic field data. We used a convolutional U-Net model, which preserves the temporal connectivity and resolution of the input data, and generated numerous synthetic input traces and their corresponding spectrally broadened traces for training the model. A priori information from field data, such as the estimated source wavelet and reflectivity distribution, was considered when generating the input data for complementing the field features. Using synthetic tests and field post-stack seismic data examples, we showed that the trained model with a priori information outperforms the models trained without a priori information in terms of the accuracy of enhanced signals. In addition, our new spectral enhancing method was verified through the application to the high-cut filtered data and its promising features were presented through the comparison with well log data.