scholarly journals Numerical Study of the Thermodynamic Uncertainty Relation for the KPZ-Equation

2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Oliver Niggemann ◽  
Udo Seifert

AbstractA general framework for the field-theoretic thermodynamic uncertainty relation was recently proposed and illustrated with the $$(1+1)$$ ( 1 + 1 ) dimensional Kardar–Parisi–Zhang equation. In the present paper, the analytical results obtained there in the weak coupling limit are tested via a direct numerical simulation of the KPZ equation with good agreement. The accuracy of the numerical results varies with the respective choice of discretization of the KPZ non-linearity. Whereas the numerical simulations strongly support the analytical predictions, an inherent limitation to the accuracy of the approximation to the total entropy production is found. In an analytical treatment of a generalized discretization of the KPZ non-linearity, the origin of this limitation is explained and shown to be an intrinsic property of the employed discretization scheme.

2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Oliver Niggemann ◽  
Udo Seifert

AbstractWe investigate the thermodynamic uncertainty relation for the $$(1+1)$$ ( 1 + 1 ) dimensional Kardar–Parisi–Zhang (KPZ) equation on a finite spatial interval. In particular, we extend the results for small coupling strengths obtained previously to large values of the coupling parameter. It will be shown that, due to the scaling behavior of the KPZ equation, the thermodynamic uncertainty relation (TUR) product displays two distinct regimes which are separated by a critical value of an effective coupling parameter. The asymptotic behavior below and above the critical threshold is explored analytically. For small coupling, we determine this product perturbatively including the fourth order; for strong coupling we employ a dynamical renormalization group approach. Whereas the TUR product approaches a value of 5 in the weak coupling limit, it asymptotically displays a linear increase with the coupling parameter for strong couplings. The analytical results are then compared to direct numerical simulations of the KPZ equation showing convincing agreement.


Author(s):  
Mosbah Ben Said ◽  
Ahmed Ouamane

Abstract Labyrinth weirs are commonly used to increase the capacity of existing spillways and provide more efficient spillways for new dams due to their high specific discharge capacity compared to the linear weir. In the present study, experimental and numerical investigation was conducted to improve the rectangular labyrinth weir performance. In this context, four configurations were tested to evaluate the influence of the entrance shape and alveoli width on its discharge capacity. The experimental models, three models of rectangular labyrinth weir with rounded entrance and one with flat entrance, were tested in rectangular channel conditions for inlet width to outlet width ratios (a/b) equal to 0.67, 1 and 1.5. The results indicate that the rounded entrance increases the weir efficiency by up to 5%. A ratio a/b equal to 1.5 leads to an 8 and 18% increase in the discharge capacity compared to a/b ratio equal to 1 and 0.67, respectively. In addition, a numerical simulation was conducted using the opensource CFD OpenFOAM to analyze and provide more information about the flow behavior over the tested models. A comparison between the experimental and numerical discharge coefficient was performed and good agreement was found (Mean Absolute Relative Error of 4–6%).


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


1999 ◽  
Vol 122 (4) ◽  
pp. 323-327
Author(s):  
G. Refai-Ahmed ◽  
M. M. Yovanovich

A numerical and experimental study of conduction heat transfer from low power magnetic components with gull wing leads was conducted to determine the effects of distributing the power loss between the core, the winding and the thermal underfill on the thermal resistance. The numerical study was conducted in the power loss ratio range of 0.5⩽PR⩽1.0, where the only active power loss was from the winding at PR=1. In addition, the effect of the thermal underfill material between the substrate and the lower surface of the magnetic package on the thermal performance of the magnetic device was also examined. For comparison, a test was conducted on a magnetic component at PR=1, without thermal underfill. This comparison revealed good agreement between the numerical and experimental results. Finally, a general model was proposed for conduction heat transfer from the surface mount power magnetic packages. The agreement between the model and the experimental results was within 8 percent. [S1043-7398(00)00704-0]


2014 ◽  
Vol 1082 ◽  
pp. 187-190 ◽  
Author(s):  
Marcelo Ferreira Pelegrini ◽  
Thiago Antonini Alves ◽  
Felipe Baptista Nishida ◽  
Ricardo A. Verdú Ramos ◽  
Cassio R. Macedo Maia

In this work, a hybrid analytical-numerical study was performed in cooling of rectangular rods made from SAE 4150 alloy steel (0.50% carbon, 0.85% chrome, 0.23% molybdenum, and 0.30% silicon). The analysis can be represented by the solution of transient diffusive problems in rectangular cylinders with variable thermo-physical properties in its domain under the boundary conditions of first kind (Dirichlet condition) and uniform initial condition. The diffusion equation was linearized through the Kirchhoff Transformation on the temperature potential to make the analytical treatment easier. The Generalized Integral Transform Technique (GITT) was applied on the diffusion equation in the domain in order to determine the temperature distribution. The physical parameters of interest were determined for several aspect ratios and compared with the results obtained through numerical simulations using the commercial software ANSYS/FluentTM15.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


2011 ◽  
Vol 255-260 ◽  
pp. 1867-1872
Author(s):  
Jing Hua Qi ◽  
Zhen Nan Zhang ◽  
Xiu Run Ge

In order to model the mechanical behavior of joints efficiently, a thin-layer tri-node joint element is constructed. The stiffness matrix of the element is derived in the paper. For it shares the common nodes with the original tri-node triangle element, the tri-node joint element can be applied to model the crack propagation without remeshing or mesh adjustment. Another advantage is that the cracked body is meshed without consideration of its geometry integrity and existence of the joints or pre-existed crack in the procedure of mesh generation, and then the triangular element intersected by the crack or joint is automatically transformed into the tri-node joint element to represent pre-existed cracks. These make the numerical simulation of crack propagation highly convenient and efficient. After CZM is chosen to model the crack tip, the mixed- energy simple criterion is used to determine whether the element is intersected by the extended crack or not, the extended crack is located in the model. By modeling the marble plates with two edge cracks subjected to the uniaxial compressive loads, it is shown that the numerical results are in good agreement with the experimental results, which suggests that the present method is valid and feasible in modeling rock crack propagation.


2009 ◽  
Vol 13 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Enrico Mollica ◽  
Eugenio Giacomazzi ◽  
Marco di

In this article a combustor burning hydrogen and air in mild regime is numerically studied by means of computational fluid dynamic simulations. All the numerical results show a good agreement with experimental data. It is seen that the flow configuration is characterized by strong exhaust gas recirculation with high air preheating temperature. As a consequence, the reaction zone is found to be characteristically broad and the temperature and concentrations fields are sufficiently homogeneous and uniform, leading to a strong abatement of nitric oxide emissions. It is also observed that the reduction of thermal gradients is achieved mainly through the extension of combustion in the whole volume of the combustion chamber, so that a flame front no longer exists ('flameless oxidation'). The effect of preheating, further dilution provided by inner recirculation and of radiation model for the present hydrogen/air mild burner are analyzed.


2006 ◽  
Vol 24 (11) ◽  
pp. 2781-2792 ◽  
Author(s):  
D. Pozo ◽  
I. Borrajero ◽  
J. C. Marín ◽  
G. B. Raga

Abstract. On 21 July 2001 a number of severe storms developed over the region of Camaguey, Cuba, which were observed by radar. A numerical simulation was performed in order to realistically reproduce the development of the storms observed that day. The mesoscale model MM5 was used to determine the initial, boundary and update conditions for the storm-scale simulation with the model ARPS. Changes to the source code of ARPS were made in order to assimilate the output from the MM5 as input data and a new land-use file with a 1-km horizontal resolution for the Cuban territory was created. A case representing the merger between cells at different stages of development was correctly reproduced by the simulation and is in good agreement with radar observations. The state of development of each cell, the time when the merger occurred, starting from the formation of clouds, the propagation motion of the cells and the increase in precipitation, due to the growth of the area after the merger, were correctly reproduced. Simulated clouds matched the main characteristics of the observed radar echoes, though in some cases, reflectivity tops and horizontal areas were overestimated. Maximum reflectivity values and the heights where these maximum values were located were in good agreement with radar data, particularly when the model reflectivity was calculated without including the snow. The MM5/ARPS configuration introduced in this study, improved sensibly the ability to simulate convective systems, thereby enhancing the local forecasting of convection in the region.


Author(s):  
Faycal Ben-Yahia ◽  
James A. Nemes ◽  
Farid Hassani

An experimental and numerical study was performed to evaluate the crashworthiness of several advanced high strength steels. The behavior of two Dual Phase (DP) steels and an HSLA steel are compared by examining the crush response of longeron column specimens, experimentally and computationally. The closed section columns, fabricated by spot welding formed channel sections, in both single hat and double hat configurations were exposed to 182 kg and 454 kg axial impacts at different velocities. Final column height and impact force history were recorded and compared with results of finite element simulation of the columns. Good agreement was found between experiments and computations.


Sign in / Sign up

Export Citation Format

Share Document