scholarly journals Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability

2020 ◽  
Vol 20 (2) ◽  
pp. 995-1020 ◽  
Author(s):  
Yufei Zou ◽  
Yuhang Wang ◽  
Yun Qian ◽  
Hanqin Tian ◽  
Jia Yang ◽  
...  

Abstract. Large wildfires exert strong disturbance on regional and global climate systems and ecosystems by perturbing radiative forcing as well as the carbon and water balance between the atmosphere and land surface, while short- and long-term variations in fire weather, terrestrial ecosystems, and human activity modulate fire intensity and reshape fire regimes. The complex climate–fire–ecosystem interactions were not fully integrated in previous climate model studies, and the resulting effects on the projections of future climate change are not well understood. Here we use the fully interactive REgion-Specific ecosystem feedback Fire model (RESFire) that was developed in the Community Earth System Model (CESM) to investigate these interactions and their impacts on climate systems and fire activity. We designed two sets of decadal simulations using CESM-RESFire for present-day (2001–2010) and future (2051–2060) scenarios, respectively, and conducted a series of sensitivity experiments to assess the effects of individual feedback pathways among climate, fire, and ecosystems. Our implementation of RESFire, which includes online land–atmosphere coupling of fire emissions and fire-induced land cover change (LCC), reproduces the observed aerosol optical depth (AOD) from space-based Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and ground-based AErosol RObotic NETwork (AERONET) data; it agrees well with carbon budget benchmarks from previous studies. We estimate the global averaged net radiative effect of both fire aerosols and fire-induced LCC at -0.59±0.52 W m−2, which is dominated by fire aerosol–cloud interactions (-0.82±0.19 W m−2), in the present-day scenario under climatological conditions of the 2000s. The fire-related net cooling effect increases by ∼170 % to -1.60±0.27 W m−2 in the 2050s under the conditions of the Representative Concentration Pathway 4.5 (RCP4.5) scenario. Such considerably enhanced radiative effect is attributed to the largely increased global burned area (+19 %) and fire carbon emissions (+100 %) from the 2000s to the 2050s driven by climate change. The net ecosystem exchange (NEE) of carbon between the land and atmosphere components in the simulations increases by 33 % accordingly, implying that biomass burning is an increasing carbon source at short-term timescales in the future. High-latitude regions with prevalent peatlands would be more vulnerable to increased fire threats due to climate change, and the increase in fire aerosols could counter the projected decrease in anthropogenic aerosols due to air pollution control policies in many regions. We also evaluate two distinct feedback mechanisms that are associated with fire aerosols and fire-induced LCC, respectively. On a global scale, the first mechanism imposes positive feedbacks to fire activity through enhanced droughts with suppressed precipitation by fire aerosol–cloud interactions, while the second one manifests as negative feedbacks due to reduced fuel loads by fire consumption and post-fire tree mortality and recovery processes. These two feedback pathways with opposite effects compete at regional to global scales and increase the complexity of climate–fire–ecosystem interactions and their climatic impacts.

2019 ◽  
Author(s):  
Yufei Zou ◽  
Yuhang Wang ◽  
Yun Qian ◽  
Hanqin Tian ◽  
Jia Yang ◽  
...  

Abstract. Large wildfires exert strong disturbance to regional and global climate systems and ecosystems by perturbing radiative forcing as well as carbon and water balance between the atmosphere and land surface, while short- and long-term variations in fire weather, terrestrial ecosystems, and human activity modulate fire intensity and reshape fire regimes. The complex climate-fire-ecosystem interactions were not included in previous climate model studies, and the resulting effects on the projections of future climate change are not well understood. Here we used a fully interactive REgion-Specific ecosystem feedback Fire model (RESFire) that was developed in the Community Earth System Model (CESM) to investigate these interactions and their impacts on climate systems and fire activity. We designed two sets of decadal simulations using CESM-RESFire for present-day (2001–2010) and future (2051–2060) scenarios, respectively and conducted a series of sensitivity experiments to assess the effects of individual feedback pathways among climate, fire, and ecosystems. Our implementation of RESFire, which includes online land-atmosphere coupling of fire emissions and fire-induced land cover change (LCC), reproduced the observed Aerosol Optical Depth (AOD) from space-based Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products and ground-based AErosol RObotic NETwork (AERONET) data and agreed well with carbon budget benchmarks from previous studies. We estimated the global averaged net radiative effect of both fire aerosols and fire-induced LCC at −0.59 ± 0.52 W m−2, which was dominated by fire aerosol-cloud interactions (−0.82 ± 0.19 W m−2), in the present-day scenario under climatological conditions of the 2000s. The fire-related net cooling effect increased by ~ 170 % to −1.60 ± 0.27 W m−2 in the 2050s under the conditions of the Representative Concentration Pathway 4.5 (RCP4.5) scenario. Such greatly enhanced radiative effect was attributed to the largely increased global burned area (+19 %) and fire carbon emissions (+100 %) from the 2000s to the 2050s driven by climate change. The net ecosystem exchange (NEE) of carbon between the land and atmosphere components in the simulations increased by 33 % accordingly, implying that biomass burning is an increasing carbon source at short-term timescales in the future. High-latitude regions with prevalent peatlands would be more vulnerable to increased fire threats due to climate change and the increase of fire aerosols could counter the climate effects of the projected decrease of anthropogenic aerosols due to air pollution control policies in many regions. We also evaluated two distinct feedback mechanisms that were associated with fire aerosols and fire-induced LCC. On a global scale, the first mechanism imposed positive feedback to fire activity through enhanced droughts with suppressed precipitation by fire aerosol-cloud interactions, while the second one manifested negative feedback due to reduced fuel loads by fire consumption and post-fire tree mortality and recovery processes. These two feedback pathways with opposite effects competed at regional to global scales and increased the complexity of climate-fire-ecosystem interactions and their climatic impacts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Fangqun Yu ◽  
Johannes Quaas

AbstractSatellite-based estimates of radiative forcing by aerosol–cloud interactions (RFaci) are consistently smaller than those from global models, hampering accurate projections of future climate change. Here we show that the discrepancy can be substantially reduced by correcting sampling biases induced by inherent limitations of satellite measurements, which tend to artificially discard the clouds with high cloud fraction. Those missed clouds exert a stronger cooling effect, and are more sensitive to aerosol perturbations. By accounting for the sampling biases, the magnitude of RFaci (from −0.38 to −0.59 W m−2) increases by 55 % globally (133 % over land and 33 % over ocean). Notably, the RFaci further increases to −1.09 W m−2 when switching total aerosol optical depth (AOD) to fine-mode AOD that is a better proxy for CCN than AOD. In contrast to previous weak satellite-based RFaci, the improved one substantially increases (especially over land), resolving a major difference with models.


2021 ◽  
Author(s):  
Arshad Nair ◽  
Fangqun Yu ◽  
Pedro Campuzano Jost ◽  
Paul DeMott ◽  
Ezra Levin ◽  
...  

Abstract Cloud condensation nuclei (CCN) are mediators of aerosol–cloud interactions, which contribute to the largest uncertainty in climate change prediction. Here, we present a machine learning/artificial intelligence model that quantifies CCN from variables of aerosol composition, atmospheric trace gases, and meteorology. Comprehensive multi-campaign airborne measurements, covering varied physicochemical regimes in the troposphere, confirm the validity of and help probe the inner workings of this machine learning model: revealing for the first time that different ranges of atmospheric aerosol composition and mass correspond to distinct aerosol number size distributions. Machine learning extracts this information, important for accurate quantification of CCN, additionally from both chemistry and meteorology. This can provide a physicochemically explainable, computationally efficient, robust machine learning pathway in global climate models that only resolve aerosol composition; potentially mitigating the uncertainty of effective radiative forcing due to aerosol–cloud interactions (ERFaci) and improving confidence in assessment of anthropogenic contributions and climate change projections.


2021 ◽  
Author(s):  
Larisa Sogacheva ◽  
Anu-Maija Sundström ◽  
Timo H. Virtanen ◽  
Antti Arola ◽  
Tuukka Petäjä ◽  
...  

<p>The Pan-Eurasian Experiment Program (PEEX) is an interdisciplinary scientific program bringing together ground-based in situ and remote sensing observations, satellite measurements and modeling tools aiming to improve the understanding of land-water-atmosphere interactions, feedback mechanisms and their effects on the ecosystem, climate and society in northern Eurasia, Russia and China. In a view of the large area covering thousands of kilometres, large gaps will remain where no or little ground-based observational information will be available. The gap can partly be filled by satellite remote sensing of relevant parameters as regards atmospheric composition.</p><p>Biomass burning is a violent source of atmospheric pollutants. Fires and corresponding emissions to the atmosphere dramatically change the atmospheric composition in case of long-lasting fire events, which might cover extended areas. In the burned areas, CO2 exchange, as well as emissions of different compounds are getting to higher levels, which might contribute to climate change by changing the radiative budget through the aerosol-cloud interaction and cloud formation. In the boreal forest, after CO2, CO and CH4, the largest emission factors for individual species were formaldehyde, followed by methanol and NO2 (Simpson et al., ACP, 2011). The emitted long-life components, e.g., black carbon, might further be transported to the distant areas and measured at the surface far from the burned areas.</p><p>In the boreal forest region, fires are very common, very large and produce a lot of smoke. Boreal areas  have been burning regularly for thousands of years and is adapted to fires, which happen most often between May and October. In boreal ecosystems, future increases in air temperature may lengthen the fire season and increase the probability of fires, leading some to hypothesize a positive feedback between warming, fire activity, carbon loss, and future climate change (Kasischke et al., 2000). </p><p> During the last few decades, several burning episodes have been observed over PEEX area by satellites (as fire counts), specifically over Siberia and central Russia. The following information available from satellites will be utilized to reveal a connection between Fire activity and atmospheric composition <span>for the period 2002-2020 over the PEEX area:</span></p><ul><li>- Fire count, FRP and burned areas from MODIS</li> <li>- Absorbing Aerosol Index (AAI), multi-instrument (GOME-2, OMI, TOMS) product</li> <li>- CO from MOPPIT</li> <li>- HCHO and NO2 from OMI</li> </ul><p>Monthly temperature and humidity fields from ERA5 re-analysis will be also utilized to reveal if a connection exist between climate variables and occurrence and intensity of the forest fires.</p><p>Kasischke, B. J. Stocks: Fire, Climate Change, and Carbon Cycling in the Boreal Forest. M. M. Cadwellet al.,Eds., Ecological Studies (Springer, New York, 2000)</p><p>Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C<sub>1</sub>-C<sub>10</sub> volatile organic compounds (VOCs), CO<sub>2</sub>, CO, NO<sub>2</sub>, NO, HCN and CH<sub>3</sub>CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.</p><p> </p>


2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.


2016 ◽  
Vol 113 (21) ◽  
pp. 5812-5819 ◽  
Author(s):  
Graham Feingold ◽  
Allison McComiskey ◽  
Takanobu Yamaguchi ◽  
Jill S. Johnson ◽  
Kenneth S. Carslaw ◽  
...  

The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system.


2011 ◽  
Vol 8 (5) ◽  
pp. 9709-9746 ◽  
Author(s):  
S. Kloster ◽  
N. M. Mahowald ◽  
J. T. Randerson ◽  
P. J. Lawrence

Abstract. Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire behavior will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075–2099) fire carbon emissions by 17 and 62% compared to present day (1985–2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projection. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by −5%. Changes in human ignition led to an increase in 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by −6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.


2016 ◽  
Author(s):  
Elisa T. Sena ◽  
Allison McComiskey ◽  
Graham Feingold

Abstract. Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influences of aerosol particles and meteorological descriptors on instantaneous cloud albedo and radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) Program over the Southern Great Plains are used. A broad statistical analysis was performed on 14-years of coincident measurements of low clouds, aerosol and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique, and averaging scale. For this continental site, the results indicate that the influence of aerosol on shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects.


2020 ◽  
Vol 12 (3) ◽  
pp. 1649-1677 ◽  
Author(s):  
Nicolas Bellouin ◽  
Will Davies ◽  
Keith P. Shine ◽  
Johannes Quaas ◽  
Johannes Mülmenstädt ◽  
...  

Abstract. Radiative forcing provides an important basis for understanding and predicting global climate changes, but its quantification has historically been done independently for different forcing agents, has involved observations to varying degrees, and studies have not always included a detailed analysis of uncertainties. The Copernicus Atmosphere Monitoring Service reanalysis is an optimal combination of modelling and observations of atmospheric composition. It provides a unique opportunity to rely on observations to quantify the monthly and spatially resolved global distributions of radiative forcing consistently for six of the largest forcing agents: carbon dioxide, methane, tropospheric ozone, stratospheric ozone, aerosol–radiation interactions, and aerosol–cloud interactions. These radiative-forcing estimates account for adjustments in stratospheric temperatures but do not account for rapid adjustments in the troposphere. On a global average and over the period 2003–2017, stratospherically adjusted radiative forcing of carbon dioxide has averaged +1.89 W m−2 (5 %–95 % confidence interval: 1.50 to 2.29 W m−2) relative to 1750 and increased at a rate of 18 % per decade. The corresponding values for methane are +0.46 (0.36 to 0.56) W m−2 and 4 % per decade but with a clear acceleration since 2007. Ozone radiative-forcing averages +0.32 (0 to 0.64) W m−2, almost entirely contributed by tropospheric ozone since stratospheric ozone radiative forcing is only +0.003 W m−2. Aerosol radiative-forcing averages −1.25 (−1.98 to −0.52) W m−2, with aerosol–radiation interactions contributing −0.56 W m−2 and aerosol–cloud interactions contributing −0.69 W m−2 to the global average. Both have been relatively stable since 2003. Taking the six forcing agents together, there is no indication of a sustained slowdown or acceleration in the rate of increase in anthropogenic radiative forcing over the period. These ongoing radiative-forcing estimates will monitor the impact on the Earth's energy budget of the dramatic emission reductions towards net-zero that are needed to limit surface temperature warming to the Paris Agreement temperature targets. Indeed, such impacts should be clearly manifested in radiative forcing before being clear in the temperature record. In addition, this radiative-forcing dataset can provide the input distributions needed by researchers involved in monitoring of climate change, detection and attribution, interannual to decadal prediction, and integrated assessment modelling. The data generated by this work are available at https://doi.org/10.24380/ads.1hj3y896 (Bellouin et al., 2020b).


2021 ◽  
Author(s):  
Sabine Undorf ◽  
Frida Bender

<p>Aerosol-cloud interactions (ACIs) continue to be subject to much uncertainty, supporting a large set of parametric and structural variants of a global climate or Earth System Model (ESM), especially regarding its aerosol and cloud microphysics components. This structural model uncertainty is relevant not only for the quantification of the climate response to anthropogenic aerosols: Because aerosol-cloud interactions are at the core of cloud and precipitation formation, they might also affect model-simulated cloud adjustments and feedbacks in response to greenhouse gases, and hence the model’s effective climate sensitivity (ECS). In-situ observations, satellite retrievals, and large-eddy simulations point to discrepancies between the effects of aerosol-cloud interactions in the real world and as modelled in ESMs, with potential implications for the model range also for ECS. </p><p>Here, we explore how different choices in ACI modelling affect the model’s ECS. For this case study the CMIP6-generation Norwegian Earth System Model version 2 (NorESM2) is used, which has a sophisticated aerosol module and in its ‘default’ version contributed to the CMIP6 suite relatively weak positive cloud feedbacks compared to the other models within the 150 years used to calculate the regression-based ECS (EffCS). The climate change feedback and hence ECS of each modified model version compared to that of the default one is estimated by prescribing a uniform rise of 4K in the sea-surface temperature boundary conditions and evaluating the resulting top-of-atmosphere imbalance difference. A similar or better representation of present-day mean climate in general and ACI effects in particular is ensured by comparing a suite of evaluation metrics with their observationally derived pendants and results from the literature.</p><p>The ACI effects and relevant model-observation discrepancies targeted with the model modifications include models’ excessive cloud brightening over stratocumulus regions compared to satellite products, excessive increase in liquid water path associated with increased aerosol amount, and model bias in the climatological fraction between supercooled liquid water and cloud ice in mixed-phase clouds. For each of these, experiments with multiple combinations of modifications in the model code are analysed, exemplifying the numerous different processes and parameters that together determine the model response. The findings complement approaches to explore models’ parameter spaces systematically by informing the choices physically and restricting the modifications not only to parametric changes. The range of models obtained sets the default NorESM2 version, with its ECS being part of the CMIP6 ensemble, into the context of ACI uncertainty, informs on the so far possibly underappreciated relevance of ACIs for climate change beyond anthropogenic aerosols, and suggests alternative parameterisations for future ‘default’ model versions.</p><div>2.11.0.0</div>


Sign in / Sign up

Export Citation Format

Share Document