low flow coefficient
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Anna Bru Revert ◽  
Paul F. Beard ◽  
John W. Chew ◽  
Sebastiaan Bottenheim

Abstract This experimental study considered the performance of a chute rim seal downstream of turbine inlet guide vanes (but without rotor blades). The experimental set up reproduced rotationally-driven ingestion without vanes and conditions of pressure-driven ingestion with vanes. The maximum rotor speed was 9000 rpm corresponding to a rotational Reynolds number of 3.3x106 with a flow coefficient of 0.485. Measurements of mean pressures in the annulus and the disc rim cavity as well as values of sealing effectiveness deduced from gas concentration data are presented. At high values of flow coefficient (low rotational speeds), the circumferential pressure variation generated by the vanes drove relatively high levels of ingestion into the disc rim cavity. For a given purge flow rate, increasing the disc rotational speed led to a reduction in ingestion, shown by higher values of sealing effectiveness, despite the presence of upstream vanes. At U_ax/((Ob))="0.485" , the sealing effectiveness approached that associated with purely rotationally-driven ingestion. A map of sealing effectiveness against non-dimensional purge flow summarises the results and illustrates the combined rotational and pressure-driven effects on the ingestion mechanism. The results imply that flow coefficient is an important parameter in rim sealing and that rotational effects are important in many applications, especially turbines with low flow coefficient


Author(s):  
Fabian Dietmann ◽  
Michael Casey ◽  
Damian M. Vogt

Abstract Further validation of an analytic method to calculate the influence of changes in Reynolds number, machine size and roughness on the performance of axial and radial turbocompressors is presented. The correlation uses a dissipation coefficient as a basis for scaling the losses with changes in relative roughness and Reynolds number. The original correlation from Dietmann and Casey [6] is based on experimental data and theoretical models. Evaluations of five numerically calculated compressor stages at different flow coefficients are presented to support the trends of the correlation. It is shown that the sensitivity of the compressor performance to Reynolds and roughness effects is highest for low flow coefficient radial stages and steadily decreases as the design flow coefficient of the stage and the hydraulic diameter of the flow channels increases.


Author(s):  
Anna Bru Revert ◽  
Paul F. Beard ◽  
John W. Chew ◽  
Sebastiaan Bottenheim

Abstract This experimental study considered the performance of a chute rim seal downstream of turbine inlet guide vanes (but without rotor blades). The experimental set up reproduced rotationally-driven ingestion without vanes and conditions of pressure-driven ingestion with vanes. The maximum rotor speed was 9000 rpm corresponding to a rotational Reynolds number of 3.3 × 106 with a flow coefficient of 0.45. Measurements of mean pressures in the annulus and the disc rim cavity as well as values of sealing effectiveness deduced from gas concentration data are presented. At high values of flow coefficient (low rotational speeds), the circumferential pressure variation generated by the vanes drove relatively high levels of ingestion into the disc rim cavity. For a given purge flow rate, increasing the disc rotational speed led to a reduction in ingestion, shown by higher values of sealing effectiveness, despite the presence of upstream vanes. At Uax/(Ωb) = 0.45, the sealing effectiveness approached that associated with purely rotationally-driven ingestion. A map of sealing effectiveness against non-dimensional purge flow summarises the results and illustrates the combined rotational and pressure-driven effects on the ingestion mechanism. The results imply that flow coefficient is an important parameter in rim sealing and that rotational effects are important in many applications, especially turbines with low flow coefficient.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Cheng Xu ◽  
Lei Chen ◽  
Ryoichi S. Amano

Abstract With the increasing demands of energy-saving from industries, the low-flow coefficient and low specific speed centrifugal compressors have gained more attention. The design of this type of compressor faced many challenges, for example, high secondary flow losses, high tip leakage losses, and low exit width based on a Reynolds number. The design also lacks a reliable database for preliminary studies. The impeller design studies were limited. Most designs for low-flow coefficient and low specific speed compressor follow the traditional methods. This paper presents design studies and discusses some unique design features to improve performance of this type of compressor. The detail computational fluids dynamics (CFD) results are presented to demonstrate the success of the design strategies. A prototype compressor for fuel cell applications was built, and performance tests were performed. The test results are compared with those of the computational analysis, and the agreement is reasonably satisfactory. The compressor meets the customer's performance goals. The design features can be used for future low-flow coefficient and low specific speed centrifugal compressor design.


2019 ◽  
Vol 140 ◽  
pp. 06010 ◽  
Author(s):  
Aleksey Yablokov ◽  
Ivan Yanin ◽  
Nikolay Sadovskyi ◽  
Yuri Kozhukhov ◽  
Minh Hai Nguyen

The study presents the simulation results of the viscid gas flow in low flow coefficient centrifugal compressor stages. The problem is solved in a stationary formulation using the Ansys CFX software package. The numerical simulation is carried out on three ultrahigh-pressure model stages; two stages have blades of the classical type impeller and one stage is of the bodily type. The value of the conditional flow coefficient is 0.0063 to 0.015. As part of the study, block-structured design meshes are used for all gas channel elements, with their total number being equaled as 13–15 million. During the calculations a numerical characteristic was validated with the results of tests carried out at the Department of Compressor, Vacuum and Refrigeration Engineering of Peter the Great St. Petersburg Polytechnic University. With an increase of inlet pressure as a result of a numerical study, it was found that for a given mathematical model the disk friction and leakage coefficient (1 + βfr + βlk) is overestimated. The analysis of flow in labyrinth seals has shown an increase of total temperature near the discs by 30–50 °С, nevertheless this fact did not influence gas parameters in the behind-the-rotor section. The calculation data obtained with finer design mesh (the first near-wall cell was 0.001 mm) is identical to those obtained with the first near-wall cell 0.01 mm mesh.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Baotong Wang ◽  
Koji Okamoto ◽  
Kazuo Yamaguchi ◽  
Susumu Teramoto

In a shear-force pump with multiple corotating disks, the pressure gain is obtained by utilizing the shear force produced on the surfaces of the rotating disks. Thus, it is expected to have advantages as a microfluid device compared to a conventional bladed compressor or pump, which suffers greatly from viscous loss. However, in previous studies, a shear-force pump could not achieve high efficiency in experiments, even though very good efficiencies were predicted in numerical and analytical studies on the flow field between corotating disks. Therefore, the objective of the present work was to investigate the internal flow dynamics and clarify the loss mechanisms in a complete shear-force pump device consisting of both rotor and stationary components. In order to achieve this goal, a numerical simulation using an independent rotor analysis was first performed on the internal flow field between two corotating disks to evaluate the isentropic efficiency and pressure coefficient that could be achieved. Then, an experimental test rig for a shear-force pump was designed and built, and an experiment was carried out to determine the performance of a complete pump device with the same corotating disk design as the independent rotor analysis. In addition, a numerical simulation was executed for the flow field of a pump system consisting of both rotor and stationary components based on the present test rig to investigate the flow field and loss factors of this device. The results of this independent rotor analysis showed that the corotating disks can achieve a fairly high efficiency at a low flow coefficient with a high dynamic pressure, and the flow direction is extremely close to the tangential direction at the disk outlet, which caused difficulties in the design of the diffuser and scroll. In the experimental test, the high total pressure loss in the parallel diffuser and scroll parts was observed. This was found to be the result of the significant friction loss caused by the long flow path due to strong recirculation in the diffuser and scroll volute, which was found in the simulation results for the internal flow in the whole pump system. In addition, a reverse flow appeared in the rotor part at a low flow coefficient, which significantly deteriorated the rotor performance. These conclusions provided some clues for improving the performance of a shear-force pump device in future work.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
C. Lettieri ◽  
N. Baltadjiev ◽  
M. Casey ◽  
Z. Spakovszky

This paper presents a design strategy for very low flow coefficient multistage compressors operating with supercritical CO2 for carbon capture and sequestration (CCS) and enhanced oil recovery (EOR). At flow coefficients less than 0.01, the stage efficiency is much reduced due to dissipation in the gas-path and more prominent leakage and windage losses. Instead of using a vaneless diffuser as is standard design practice in such applications, the current design employs a vaned diffuser to decrease the meridional velocity and to widen the gas path. The aim is to achieve a step change in performance. The impeller exit width is increased in a systematic parameter study to explore the limitations of this design strategy and to define the upper limit in efficiency gain. The design strategy is applied to a full-scale reinjection compressor currently in service. Three-dimensional, steady, supercritical CO2 computational fluid dynamics (CFD) simulations of the full stage with leakage flows are carried out with the National Institute of Standards and Technology (NIST) real gas model. The design study suggests that a nondimensional impeller exit width parameter b2* = (b2/R)ϕ of six yields a 3.5 point increase in adiabatic efficiency relative to that of a conventional compressor design with vaneless diffuser. Furthermore, it is shown that in such stages the vaned diffuser limits the overall stability and that the onset of rotating stall is likely caused by vortex shedding near the diffuser leading edge. The inverse of the nondimensional impeller exit width parameter b2* can be interpreted as the Rossby number. The investigation shows that, for very low flow coefficient designs, the Coriolis accelerations dominate the relative flow accelerations, which leads to inverted swirl angle distributions at impeller exit. Combined with the two-orders-of-magnitude higher Reynolds number for supercritical CO2, the leading edge vortex shedding occurs at lower flow coefficients than in air suggesting an improved stall margin.


Author(s):  
C. Lettieri ◽  
N. Baltadjiev ◽  
M. Casey ◽  
Z. Spakovszky

This paper presents a design strategy for very low flow coefficient multi-stage compressors operating with supercritical CO2 for Carbon Capture and Sequestration (CCS) and Enhanced Oil Recovery (EOR). At flow coefficients less than 0.01 the stage efficiency is much reduced due to dissipation in the gas-path and more prominent leakage and windage losses. Instead of using a vaneless diffuser as is standard design practice in such applications, the current design employs a vaned diffuser to decrease the meridional velocity and to widen the gas path. The aim is to achieve a step change in performance. The impeller exit width is increased in a systematic parameter study to explore the limitations of this design strategy and to define the upper limit in efficiency gain. The design strategy is applied to a full-scale re-injection compressor currently in service. Three-dimensional, steady, supercritical CO2 CFD simulations of the full stage with leakage flows are carried out with the NIST real gas model. The design study suggests that a non-dimensional impeller exit width parameter b2* = (b2/R)ϕ of 6 yields a 3.5 point increase in adiabatic efficiency relative to that of a conventional compressor design with vaneless diffuser. Furthermore, it is shown that in such stages the vaned diffuser limits the overall stability and that the onset of rotating stall is likely caused by vortex shedding near the diffuser leading edge. The inverse of the non-dimensional impeller exit width parameter b2* can be interpreted as the Rossby number. The investigation shows that, for very low flow coefficient designs, the Coriolis accelerations dominate the relative flow accelerations, which leads to inverted swirl angle distributions at impeller exit. Combined with the two-orders-of-magnitude higher Reynolds number for supercritical CO2, the leading edge vortex shedding occurs at lower flow coefficients than in air suggesting an improved stall margin.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yongsheng Wang ◽  
Feng Lin ◽  
Chaoqun Nie ◽  
Abraham Engeda

Very low flow coefficient centrifugal compressors are often applied as the last stages of multistage compressors. Due to the lower volume flow rate, the flow channels in the impeller and diffuser are so narrow that friction loss becomes the main factor, which leads to lower efficiency than that of other stages in the same compressors. In addition, most of design methods are generally based on medium flow coefficient centrifugal compressors. Taking on researches on the low flow coefficient centrifugal compressors is significant and necessary. One-dimensional (1D) code, consisting of design and analysis parts, is developed in this study to provide basic geometric data and predict the entire performance of centrifugal compressor. Three-dimensional geometry of the impeller is built. CFD simulation is carried out as well to be compared with 1D prediction. With the continuous geometry adjustment, the final performance of the centrifugal compressor will be fixed once the performance discrepancy between CFD and one-dimensional code is acceptable. The details on the flow field within impeller will be presented through CFD.


Sign in / Sign up

Export Citation Format

Share Document