anterior midgut
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 22 (20) ◽  
pp. 10901
Author(s):  
Kate K. S. Batista ◽  
Cecília S. Vieira ◽  
Marcela B. Figueiredo ◽  
Samara G. Costa-Latgé ◽  
Patrícia Azambuja ◽  
...  

Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial load in the digestive tract, and the recolonization with each bacterium was successfully detected seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph, and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only in the midgut, but also systemically in the fat body, and may be crucial for the development and transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 782
Author(s):  
Yin Shan Isa Mack ◽  
Masatoshi Dehari ◽  
Nobukatsu Morooka ◽  
Shinji Nagata

Arthropods, including insects, convert sterols into cholesterol due to the inability to synthesise cholesterol de novo. 24-dehydrocholesterol reductase (DHCR24) plays an important role in the conversion. Not only involving the cholesterol biosynthesis in vertebrates, DHCR24 is required for the conversion of desmosterol into cholesterol in phytophagous insects. The current study extensively examined DHCR24 in omnivorous insects, which feed on both plants and animals, using Gryllus bimaculatus as the experimental model. We identified cDNAs encoding two homologues of DHCR24 from G. bimaculatus, which were designated as GbDHCR24-1 and GbDHCR24-2. Both homologues contained the flavin adenine dinucleotide binding domain, which is a feature of DHCR24. Quantitative polymerase chain reaction revealed that among tissues of adult crickets, fat body and anterior midgut expressed high levels of GbDHCR24s. Both fat body and anterior midgut demonstrated DHCR24 activities in which one of the functions is the conversion of desmosterol into cholesterol in vitro. Knockdown of GbDHCR24-1 significantly reduced the conversion activity in the anterior midgut while knockdown of the GbDHCR24-2 did not. Additionally, the accumulation of desmosterol was detected in a feeding experiment with a specific DHCR24 inhibitor, azacosterol. We finally concluded that GbDHCR24-1 is the major enzyme that facilitates the desmosterol-to-cholesterol-conversion in crickets.


Development ◽  
2021 ◽  
Vol 148 (18) ◽  
Author(s):  
Dongsun Shin ◽  
Mitsutoshi Nakamura ◽  
Yoshitaka Morishita ◽  
Mototsugu Eiraku ◽  
Tomoko Yamakawa ◽  
...  

ABSTRACT Proper organ development often requires nuclei to move to a specific position within the cell. To determine how nuclear positioning affects left-right (LR) development in the Drosophila anterior midgut (AMG), we developed a surface-modeling method to measure and describe nuclear behavior at stages 13-14, captured in three-dimensional time-lapse movies. We describe the distinctive positioning and a novel collective nuclear behavior by which nuclei align LR symmetrically along the anterior-posterior axis in the visceral muscles that overlie the midgut and are responsible for the LR-asymmetric development of this organ. Wnt4 signaling is crucial for the collective behavior and proper positioning of the nuclei, as are myosin II and the LINC complex, without which the nuclei fail to align LR symmetrically. The LR-symmetric positioning of the nuclei is important for the subsequent LR-asymmetric development of the AMG. We propose that the bilaterally symmetrical positioning of these nuclei may be mechanically coupled with subsequent LR-asymmetric morphogenesis.


Author(s):  
Natalia Capriotti ◽  
Paula Gioino ◽  
Sheila Ons ◽  
Juan P. Ianowski

Rhodnius prolixus is a blood-feeding insect vector of Tripanosoma cruzi, a protozoan parasite that causes Chagas' disease. During each blood meal the animals ingest large volumes of blood, that may be up to 12 times the unfed body mass. These blood meals impose a significant osmotic stress for the animals due to the hyposmotic condition of the ingested blood compared to the insect's haemolymph. Thus, the insect undergoes a massive postprandial diuresis that allows for the excretion of the plasma fraction of the blood in less than two hours. Diuresis is performed by the excretory system, consisting of the Malpighian tubules and gut, under the control of diuretic and antidiuretic factors. We investigated the ion transport machinery triggered by stimulation with the diuretic factor serotonin in the anterior midgut (i.e. crop) and the effect of the diuretic modulator RhoprCCHamide2. Ussing chamber assays revealed that serotonin-stimulated increase in transepithelial short circuit current (Isc) was more sensitive to the blockage with amiloride than EIPA, suggesting the involvement of Na+ channels. Incubation in Na+-free, but not Cl−-free saline, blocked the effect of serotonin on Isc. Moreover, treatment with NKCC and NCC blockers had no effect on fluid secretion but was blocked by amiloride. Blockage of Na+/K+-ATPase with ouabain inhibit Isc but the H+-ATPase inhibitor bafilomycin had no effect. The neuropeptide RhoprCCHamide2 diminished serotonin-stimulated Isc across the crop. The results suggest that Na+ undergoes active transport via an apical amiloride-sensitive Na+ channels and a basolateral ouabain-sensitive Na+/K+-ATPase while Cl− is transported through passive paracellular pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petter F. Entringer ◽  
David Majerowicz ◽  
Katia C. Gondim

Insects are unable to synthesize cholesterol and depend on the presence of sterols in the diet for cell membrane composition and hormone production. Thus, cholesterol absorption, transport, and metabolism are potential targets for vector and pest control strategies. Here, we investigate the dietary cholesterol absorption and tissue distribution in the kissing bug Rhodnius prolixus using radiolabeled cholesterol. Both the anterior and posterior midguts absorbed cholesterol from the ingested blood, although the anterior midgut absorbed more. We also observed esterified cholesterol labeling in the epithelium, indicating that midgut cells can metabolize and store cholesterol. Only a small amount of labeled cholesterol was found in the hemolymph, where it was mainly in the free form and associated with lipophorin (Lp). The fat body transiently accumulated cholesterol, showing a labeled cholesterol peak on the fifth day after the blood meal. The ovaries also incorporated cholesterol, but cumulatively. The insects did not absorb almost half of the ingested labeled cholesterol, and radioactivity was present in the feces. After injection of 3H-cholesterol-labeled Lp into females, a half-life of 5.5 ± 0.7 h in the hemolymph was determined. Both the fat body and ovaries incorporated Lp-associated cholesterol, which was inhibited at low temperature, indicating the participation of active cholesterol transport. These results help describe an unexplored part of R. prolixus lipid metabolism.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 392
Author(s):  
Amalendu Ghosh ◽  
Priti ◽  
Bikash Mandal ◽  
Ralf G. Dietzgen

Thrips are important pests of agricultural, horticultural, and forest crops worldwide. In addition to direct damages caused by feeding, several thrips species can transmit diverse tospoviruses. The present understanding of thrips–tospovirus relationships is largely based on studies of tomato spotted wilt virus (TSWV) and Western flower thrips (Frankliniella occidentalis). Little is known about other predominant tospoviruses and their thrips vectors. In this study, we report the progression of watermelon bud necrosis virus (WBNV) infection in its vector, melon thrips (Thrips palmi). Virus infection was visualized in different life stages of thrips using WBNV-nucleocapsid protein antibodies detected with FITC-conjugated secondary antibodies. The anterior midgut was the first to be infected with WBNV in the first instar larvae. The midgut of T. palmi was connected to the principal salivary glands (PSG) via ligaments and the tubular salivary glands (TSG). The infection progressed to the PSG primarily through the connecting ligaments during early larval instars. The TSG may also have an ancillary role in disseminating WBNV from the midgut to PSG in older instars of T. palmi. Infection of WBNV was also spread to the Malpighian tubules, hindgut, and posterior portion of the foregut during the adult stage. Maximum virus-specific fluorescence in the anterior midgut and PSG indicated the primary sites for WBNV replication. These findings will help to better understand the thrips–tospovirus molecular relationships and identify novel potential targets for their management. To our knowledge, this is the first report of the WBNV dissemination path in its vector, T. palmi.


2020 ◽  
Author(s):  
Dongsun Shin ◽  
Mitsutoshi Nakamura ◽  
Yoshitaka Morishita ◽  
Mototsugu Eiraku ◽  
Tomoko Yamakawa ◽  
...  

SummaryProper organ development often requires nuclei to move to a specific position within the cell. To determine how nuclear positioning affects left-right (LR) development in the Drosophila anterior midgut (AMG), we developed a surface-modeling method to measure and describe nuclear behavior at stages 13-14, captured in three-dimensional time-lapse movies. We describe the distinctive positioning and a novel collective nuclear behavior by which nuclei align LR-symmetrically along the anterior-posterior axis in the visceral muscles that overlie the midgut and are responsible for this organ’s LR-asymmetric development. Wnt4 signaling is crucial for the collective behavior and proper positioning of the nuclei, as are myosin II and LINC complex, without which the nuclei failed to align LR-symmetrically. The LR-symmetric positioning of the nuclei is important for the subsequent LR-asymmetric development of the AMG. We propose that the bilaterally symmetrical positioning of these nuclei may be mechanically coupled with subsequent LR-asymmetric morphogenesis.


Parasitology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Larissa F. Paranaiba ◽  
Rodrigo P. Soares ◽  
Alessandra A. Guarneri

Abstract The escape kinetics from the anterior midgut (AM) of Trypanosoma cruzi during the initial steps of infection was assessed in Triatoma infestans, as well as its ability to survive migration in the digestive tract of the vector. All the four strains evaluated survived and reached variable parasite densities. After 49–50 days, YuYu [discrete typing units (DTU) I] strain reached the highest parasite numbers in the rectum followed by Bug (DTU V), CL-Brener (DTU VI) and Dm28c (DTU I). All strains accomplished metacyclogenesis. Bug strain reached the highest numbers of metacyclic trypomastigotes followed by YuYu and CL-Brener/Dm28c. A remarkable parasite reduction in the AM for Bug strain, but not Dm28c was noticed at 72 h of infection. In the posterior midgut + rectum high densities of parasites from both strains were detected at this period indicating the parasites crossed the AM. For Dm28c strain, in infections initiated with trypomastigotes, parasites left AM faster than those starting with epimastigotes. In conclusion, T. cruzi strains from different DTUs were able to infect T. infestans reaching variable parasite densities. The kinetics of migration in the digestive tract may be affected by strain and/or the evolutive form used for infection.


2019 ◽  
Vol 56 (6) ◽  
pp. 1636-1649 ◽  
Author(s):  
Djane C Baia-da-Silva ◽  
Alessandra S Orfanó ◽  
Rafael Nacif-Pimenta ◽  
Fabricio F de Melo ◽  
Maria G V B Guerra ◽  
...  

Abstract The mosquito gut is divided into foregut, midgut, and hindgut. The midgut functions in storage and digestion of the bloodmeal. This study used light, scanning (SEM), and transmission (TEM) electron microscopy to analyze in detail the microanatomy and morphology of the midgut of nonblood-fed Anopheles aquasalis females. The midgut epithelium is a monolayer of columnar epithelial cells that is composed of two populations: microvillar epithelial cells and basal cells. The microvillar epithelial cells can be further subdivided into light and dark cells, based on their affinities to toluidine blue and their electron density. FITC-labeling of the anterior midgut and posterior midgut with lectins resulted in different fluorescence intensities, indicating differences in carbohydrate residues. SEM revealed a complex muscle network composed of circular and longitudinal fibers that surround the entire midgut. In summary, the use of a diverse set of morphological methods revealed the general microanatomy of the midgut and associated tissues of An. aquasalis, which is a major vector of Plasmodium spp. (Haemosporida: Plasmodiidae) in America.


Sign in / Sign up

Export Citation Format

Share Document