synchronization accuracy
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2108 (1) ◽  
pp. 012063
Author(s):  
Yue Zuo ◽  
Xingcai Wang ◽  
Bo Zhang

Abstract At present, mobile devices generally use GPS, Beidou and other satellite time service methods to obtain time, but the clock synchronization based on IEEE 1588 protocol still has deviation. To solve this problem, a clock synchronization method is proposed to improve IEEE 1588 protocol. Based on the analysis of IEEE 1588 protocol, the clock deviation and frequency deviation which affect the synchronization accuracy are modeled. The second-order Kalman filtering algorithm is used to recursively deduce the clock deviation and frequency deviation, and the Allan variance is used to verify the noise characteristics and constantly correct the clock deviation. Finally, the improved effect is verified by relevant experiments. The results show that the improved system can improve the synchronization accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6148
Author(s):  
Hyuno Kim ◽  
Masatoshi Ishikawa

Precisely evaluating the frame synchronization of the camera network is often required for accurate data fusion from multiple visual information. This paper presents a novel method to estimate the synchronization accuracy by using inherent visual information of linearly oscillating light spot captured in the camera images instead of using luminescence information or depending on external measurement instrument. The suggested method is compared to the conventional evaluation method to prove the feasibility. Our experiment result implies that the estimation accuracy of the frame synchronization can be achieved in sub-millisecond order.


2021 ◽  
Vol 376 (1835) ◽  
pp. 20200331 ◽  
Author(s):  
Nori Jacoby ◽  
Rainer Polak ◽  
Justin London

Human social interactions often involve carefully synchronized behaviours. Musical performance in particular features precise timing and depends on the differentiation and coordination of musical/social roles. Here, we study the influence of musical/social roles, individual musicians and different ensembles on rhythmic synchronization in Malian drum ensemble music, which features synchronization accuracy near the limits of human performance. We analysed 72 recordings of the same piece performed by four trios, in which two drummers in each trio systematically switched roles (lead versus accompaniment). Musical role, rather than individual or group differences, is the main factor influencing synchronization accuracy. Using linear causal modelling, we found a consistent pattern of bi-directional couplings between players, in which the direction and strength of rhythmic adaptation is asymmetrically distributed across musical roles. This differs from notions of musical leadership, which assume that ensemble synchronization relies predominantly on a single dominant personality and/or musical role. We then ran simulations that varied the direction and strength of sensorimotor coupling and found that the coupling pattern used by the Malian musicians affords nearly optimal synchronization. More broadly, our study showcases the importance of ecologically valid and culturally diverse studies of human behaviour. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3957
Author(s):  
Francesco Lamonaca ◽  
Domenico Luca Carnì

This paper deals with the synchronization of Mobile Smart Objects (MSOs). Today, this scenario is becoming typical in Industrial IoT applications due to the plethora of MSOs available as robots, drones and wearables, equipped by sensors making them measurement instruments cooperating in distributed measurement systems. In this context, the synchronization accuracy is directly tied with the accuracy of the performed measurements. In hierarchical synchronization approaches, the presence of an MSO makes the network topology time varying, and this could prevent the synchronization of the whole network. Peer to peer approaches do not need node hierarchy to synchronize but could not converge to a common sense of time. To overcome these challenges, this paper proposes a consensus-based approach for which the convergence to a common sense of time is here demonstrated. The proposal deploys the MSO to bring the common sense of time from an SO to another, establishing new paths among SOs. The new paths are temporary and depend on the MSO’s route. In the paper, the influence of the MSO’s route on the synchronization accuracy σ and the time interval to synchronize all the SOs ∆TIS is investigated, also. The mathematical proof, the simulations and the experimental tests confirm that the MSO can reduce both the values of σ and ∆TIS, because the new connections introduced by the MSO can boost the exchange of information among SOs. Consequently, the criteria to a priori select the route ameliorating σ and ∆TIS values are proposed.


2021 ◽  
Author(s):  
Songyu Yuan ◽  
Yuehua Li ◽  
Yong Chen ◽  
Chenghao Wang

2021 ◽  
Author(s):  
Vladimir Sergeevich Milyutin ◽  
Eugeniy Vasilevich Rogozhnikov ◽  
Kirill Petrovskiy ◽  
Dmitriy Pokamestov ◽  
Edgar Dmitriyev ◽  
...  

Abstract Frequency synchronization is a necessary operation for all wireless communication systems. Due to the wide frequency range defined for 5G NR systems, this procedure becomes critical. To ensure high transmission rates and the use of high-order modulation, up to 256 QAM for 5G communication systems, it is necessary to ensure high frequency synchronization accuracy. In this article, we have reviewed various approaches to implementing frequency synchronization and proposed, in our opinion, the most effective method for correcting the frequency shift of the signal.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Waleed Alghamdi ◽  
Michael Schukat

AbstractThe IEEE 1588 precision time protocol (PTP) is very important for many industrial sectors and applications that require time synchronization accuracy between computers down to microsecond and even nanosecond levels. Nevertheless, PTP and its underlying network infrastructure are vulnerable to cyber-attacks, which can stealthily reduce the time synchronization accuracy to unacceptable and even damage-causing levels for individual clocks or an entire network, leading to financial loss or even physical destruction. Existing security protocol extensions only partially address this problem. This paper provides a comprehensive analysis of strategies for advanced persistent threats to PTP infrastructure, possible attacker locations, and the impact on clock and network synchronization in the presence of security protocol extensions, infrastructure redundancy, and protocol redundancy. It distinguishes between attack strategies and attacker types as described in RFC7384, but further distinguishes between the spoofing and time source attack, the simple internal attack, and the advanced internal attack. Some experiments were conducted to demonstrate the impact of PTP attacks. Our analysis shows that a sophisticated attacker has a range of methodologies to compromise a PTP network. Moreover, all PTP infrastructure components can host an attacker, making the comprehensive protection of a PTP network against a malware infiltration, as for example exercised by Stuxnet, a very tedious task.


2021 ◽  
Vol 15 (1) ◽  
pp. 13-30
Author(s):  
Tomas Thalmann ◽  
Hans Neuner

AbstractDespite the increasing interest in kinematic data acquisition, Robotic Total Stations (RTSs) are still relatively seldom used. No matter if Mobile Mapping Systems or Control & Guidance, GNSS is mostly used as position sensor, which limits the application to outdoor areas. For indoor applications, a combination of relative sensors is usually employed. One reason why RTSs are not used is the challenging time referencing and synchronization. In this work we analyze the challenges of a synchronized kinematic application of RTSs and present solutions.Our approach is based on a wireless network synchronization to establish a precise temporal reference frame. The achievable synchronization quality is thoroughly examined. In addition we develop a kinematic model of spherical measurements, that incorporates timing related parameters. To estimate these parameters we propose a temporal calibration utilizing an industrial robot. Both parts of our approach are evaluated using a test setup of two total stations, proofing an overall synchronization accuracy of 0.2 ms. An overall horizontal kinematic point accuracy of 2.3 mm reveals the potential of sufficiently synchronized RTSs.


Sign in / Sign up

Export Citation Format

Share Document