hydrogen retention
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dmitry Matveev ◽  
Xi Jiang ◽  
Gennady Sergienko ◽  
Arkadi Kreter ◽  
Sebastijan Brezinsek ◽  
...  

Abstract Based on the conventional model of hydrogen retention in plasma-facing components, the question of hydrogen outgassing during and after plasma exposure is addressed in relation to mass spectrometry and laser-induced breakdown sprectroscopy (LIBS) measurements. Fundamental differences in retention and release data acquired by LIBS and by mass spectrometry are described analytically and by modelling. Reaction-diffusion simulations are presented that demonstrate possible thermal outgassing effects caused by LIBS. Advantages and limitations of LIBS as a tool for analysis of short term retention are discussed.


Author(s):  
Yunqiu Cui ◽  
Hongyu Fan ◽  
Chunjie Niu ◽  
Weifeng Liu ◽  
Zi-Lu Zhao ◽  
...  

Abstract Neutral beam injection (NBI) heating is a significant auxiliary heating method used in Tokamak fusion devices. The material of faraday shield (FS) and accelerator grids in the NBI inductively coupled plasma (ICP) source can be damaged during operation by the high-density hydrogen plasma irradiation, and thus affecting the stability of the NBI system. In this paper, a series of hydrogen plasma exposure experiments are performed on oxygen-free copper (OFC) specimens at 400-850 K with ion energy of 20-200 eV and irradiation fluence up to 1.0×1025 /m2. Meanwhile, the rate equation model is adopted for numerical simulation of the bubble growth and hydrogen retention. The influence of OFC surface temperature, hydrogen ion energy and fluence on OFC damage are experimentally and numerically investigated. Surface observations show that swell and exfoliation are formed on the OFC samples at 400 K and 600 K by scanning electron microscopy (SEM). The hydrogen ion energy varying from 20 to 200 eV at 400 K is observed to have little effect on OFC surface microstructure. The simulative results show that there exist different critical temperatures when the initial bubble radius changes. The bubble surface density rises and the bubble size decreases with increasing temperature (below the critical temperature). In addition, adjacent bubbles get closer to each other with the growth of hydrogen bubbles, and the strong tensile stress is produced inside the surrounding material of hydrogen bubbles. Some cracks caused by hydrogen bubbles appear on the surface of the OFC to relax the pressure-induced stress, ultimately leading to OFC FS/grids material damage. This investigation helps to understand hydrogen retention and failure mechanisms of OFC materials under extreme operation conditions in the NBI devices.


2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Daniel R. Mason ◽  
Fredric Granberg ◽  
Max Boleininger ◽  
Thomas Schwarz-Selinger ◽  
Kai Nordlund ◽  
...  
Keyword(s):  

2021 ◽  
Vol 170 ◽  
pp. 112532
Author(s):  
Kota Tamura ◽  
Haruka Suzuki ◽  
Junichi Miyazawa ◽  
Suguru Masuzaki ◽  
Hirotaka Toyoda

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1089
Author(s):  
Leonard Raumann ◽  
Jan Willem Coenen ◽  
Johann Riesch ◽  
Yiran Mao ◽  
Daniel Schwalenberg ◽  
...  

Tungsten (W) has the unique combination of excellent thermal properties, low sputter yield, low hydrogen retention, and acceptable activation. Therefore, W is presently the main candidate for the first wall and armor material for future fusion devices. However, its intrinsic brittleness and its embrittlement during operation bears the risk of a sudden and catastrophic component failure. As a countermeasure, tungsten fiber-reinforced tungsten (Wf/W) composites exhibiting extrinsic toughening are being developed. A possible Wf/W production route is chemical vapor deposition (CVD) by reducing WF6 with H2 on heated W fabrics. The challenge here is that the growing CVD-W can seal gaseous domains leading to strength reducing pores. In previous work, CVD models for Wf/W synthesis were developed with COMSOL Multiphysics and validated experimentally. In the present article, these models were applied to conduct a parameter study to optimize the coating uniformity, the relative density, the WF6 demand, and the process time. A low temperature and a low total pressure increase the process time, but in return lead to very uniform W layers at the micro and macro scales and thus to an optimized relative density of the Wf/W composite. High H2 and low WF6 gas flow rates lead to a slightly shorter process time and an improved coating uniformity as long as WF6 is not depleted, which can be avoided by applying the presented reactor model.


2021 ◽  
Vol 26 ◽  
pp. 100856
Author(s):  
Ayaka Koike ◽  
Moeko Nakata ◽  
Shota Yamazaki ◽  
Takuro Wada ◽  
Fei Sun ◽  
...  

2020 ◽  
Vol 60 (9) ◽  
pp. 096003
Author(s):  
Qianran Yu ◽  
Michael J. Simmonds ◽  
Russ. Doerner ◽  
George R. Tynan ◽  
Li Yang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document