formulation stability
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 5)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 143
Author(s):  
Su Jeong Song ◽  
Joon Sig Choi

Self-assembled peptide nanostructures recently have gained much attention as drug delivery systems. As biomolecules, peptides have enhanced biocompatibility and biodegradability compared to polymer-based carriers. We introduce a peptide nanoparticle system containing arginine, histidine, and an enzyme-responsive core of repeating GLFG oligopeptides. GLFG oligopeptides exhibit specific sensitivity towards the enzyme cathepsin B that helps effective controlled release of cargo molecules in the cytoplasm. Arginine can induce cell penetration, and histidine facilitates lysosomal escape by its buffering capacity. Herein, we propose an enzyme-responsive amphiphilic peptide delivery system (Arg-His-(Gly-Phe-Lue-Gly)3, RH-(GFLG)3). The self-assembled RH-(GFLG)3 globular nanoparticle structure exhibited a positive charge and formulation stability for 35 days. Nile Red-tagged RH-(GFLG)3 nanoparticles showed good cellular uptake compared to the non-enzyme-responsive control groups with d-form peptides (LD (LRH-D(GFLG)3), DL (DRH-L(GFLG)3), and DD (DRH-D(GFLG)3). The RH-(GFLG)3 nanoparticles showed negligible cytotoxicity in HeLa cells and human RBCs. To determine the drug delivery efficacy, we introduced the anticancer drug doxorubicin (Dox) in the RH-(GFLG)3 nanoparticle system. LL-Dox exhibited formulation stability, maintaining the physical properties of the nanostructure, as well as a robust anticancer effect in HeLa cells compared to DD-Dox. These results indicate that the enzyme-sensitive RH-(GFLG)3 peptide nanoparticles are promising candidates as drug delivery carriers for biomedical applications.


Author(s):  
Leila Regina Giarola ◽  
Julia Cedran Coco ◽  
Ilza Maria de Oliveira Sousa ◽  
Letícia Caramori Cefali ◽  
Janaína Artem Ataide ◽  
...  

LWT ◽  
2021 ◽  
pp. 112377
Author(s):  
Hanen Falleh ◽  
Mariem Ben Jemaa ◽  
Marcos A. Neves ◽  
Hiroko Isoda ◽  
Mitsutoshi Nakajima ◽  
...  

Author(s):  
Wei-Jie Fang ◽  
Jia-Wei Liu ◽  
James Barnard ◽  
Haibin Wang ◽  
Yan-Chen Qian ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wendy Bernhard ◽  
Kris Barreto ◽  
Ayman El-Sayed ◽  
Carolina Gonzalez ◽  
Raja Solomon Viswas ◽  
...  

Abstract Background Epidermal growth factor receptor (EGFR) is a target for cancer therapy as it is overexpressed in a wide variety of cancers. Therapeutic antibodies that bind EGFR are being evaluated in clinical trials as imaging agents for positron emission tomography and image-guided surgery. However, some of these antibodies have safety concerns such as infusion reactions, limiting their use in imaging applications. Nimotuzumab is a therapeutic monoclonal antibody that is specific for EGFR and has been used as a therapy in a number of countries. Methods Formulation of IRDye800CW-nimotuzumab for a clinical trial application was prepared. The physical, chemical, and pharmaceutical properties were tested to develop the specifications to determine stability of the product. The acute and delayed toxicities were tested and IRDye800CW-nimotuzumab was determined to be non-toxic. Non-compartmental pharmacokinetics analysis was used to determine the half-life of IRDye800CW-nimotuzumab. Results IRDye800CW-nimotuzumab was determined to be non-toxic from the acute and delayed toxicity study. The half-life of IRDye800CW-nimotuzumab was determined to be 38 ± 1.5 h. A bi-exponential analysis was also used which gave a t1/2 alpha of 1.5 h and t1/2 beta of 40.8 h. Conclusions Here, we show preclinical studies demonstrating that nimotuzumab conjugated to IRDye800CW is safe and does not exhibit toxicities commonly associated with EGFR targeting antibodies.


2021 ◽  
Vol 9 (3) ◽  
pp. 566
Author(s):  
Courtney L. Finch ◽  
Julie Dyall ◽  
Shuang Xu ◽  
Elizabeth A. Nelson ◽  
Elena Postnikova ◽  
...  

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.


2021 ◽  
Vol 21 (3) ◽  
pp. 1897-1903
Author(s):  
Jung-Hwan Lee ◽  
Gun-Sub Lee ◽  
Eung-Nam Park ◽  
Sung-Eun Hong ◽  
Sung-Bong Kye ◽  
...  

In this study, a [0001]-plane planar-type ZnO ceramic powder material with a high aspect ratio ranging from 20:1–50:1 is synthesized using the electrolyte collected from zinc air battery power generation. This high aspect ratio may be due to the Zn(OH)2-4 anion dissolved in the electrolyte. The obtained planar-type ZnO exhibits excellent formulation stability and applicability, even when formulated as a cosmetic with a single inorganic ingredient. Compared to commercial ZnO or TiO2 powders, relatively better protection against infrared and ultraviolet (UV) radiation is realized due to its asymmetric characteristics, with a width of approximately 1 μm and thickness of tens of nm. The synthesized planar-type ZnO is mixed with nanosized ZnO or TiO2 commercial powders and formulated into various combinations to achieve a high UV protection rate and heat-blocking effect. In particular, the addition of planar-type ZnO to nanosized TiO2 powders increases the heat-blocking effect, and improves the applicability and formulation stability of the cosmetic formulation, despite the decrease in turbidity. Among all the ceramic powder combinations examined in this study, the best UV protection rate and heat-blocking effect are obtained when the synthesized planar-type ZnO is mixed with microsized and nanosized TiO2.


Author(s):  
Courtney L. Finch ◽  
Julie Dyall ◽  
Shuang Xu ◽  
Elizabeth A. Nelson ◽  
Elena Postnikova ◽  
...  

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.


Sign in / Sign up

Export Citation Format

Share Document