hydrogen sorption
Recently Published Documents


TOTAL DOCUMENTS

766
(FIVE YEARS 98)

H-INDEX

61
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Amol Kamble ◽  
Pratibha Sharma ◽  
Jacques Huot

The addition of 4 wt% Zr to Ti52V12Cr36 alloy was carried out in two different ways: arc-melting or ball-milling. The cast alloy showed rapid hydrogen absorption up to 3.6 wt% of hydrogen capacity within 15 min. Ball milling this sample worsened the kinetics, and no hydrogen absorption was registered when milling was carried out for 30 or 60 min. When zirconium is added by ball-milling, the kinetic is slower than that when addition is by arc-melting. This is due to the fact that when added by milling, zirconium does not form a ternary phase with Ti, V, and Cr but instead is just dispersed on the particles’ surface.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 270
Author(s):  
Adam Dębski ◽  
Sylwia Terlicka ◽  
Anna Sypien ◽  
Władysław Gąsior ◽  
Magda Pęska ◽  
...  

In this paper, the hydrogen sorption properties of casted Ag-Mg alloys were investigated. The obtained alloys were structurally analyzed by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). The study was carried out for four alloys from the two-phase region (Mg) + γ′ (AgMg4) with nominal concentrations of 5 wt. %, 10 wt. %, 15 wt. %, and 20 wt. % Ag, four alloys with nominal compositions equivalent to intermetallic phases: AgMg4, AgMg3, AgMg, and Ag3Mg, one alloy from the two-phase region AgMg + Ag3Mg (Ag60Mg40), and one alloy from the two-phase region AgMg + AgMg3 (Ag40Mg60). The hydrogenation process was performed using a Sievert-type sorption analyzer. The hydride decomposition temperature and kinetic properties of the synthesized hydrides were investigated by differential scanning calorimetry (DSC) coupled with thermogravimetric analysis (TGA). Samples with high magnesium content were found to readily absorb significant amounts of hydrogen, while hydrogen absorption was not observed for samples with silver concentrations higher than 50 at. % (AgMg intermetallic phase).


2021 ◽  
pp. 108766
Author(s):  
Hafeez Ullah ◽  
N. Laidani ◽  
R. Bartali ◽  
V. Micheli ◽  
Kashif Safeen ◽  
...  

2021 ◽  
pp. 162682
Author(s):  
Zhibing Liu ◽  
Jiangchuan Liu ◽  
Zhaohui Wu ◽  
Qinke Tang ◽  
Yunfeng Zhu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6158
Author(s):  
Erika Michela Dematteis ◽  
Jussara Barale ◽  
Marta Corno ◽  
Alessandro Sciullo ◽  
Marcello Baricco ◽  
...  

This paper aims at addressing the exploitation of solid-state carriers for hydrogen storage, with attention paid both to the technical aspects, through a wide review of the available integrated systems, and to the social aspects, through a preliminary overview of the connected impacts from a gender perspective. As for the technical perspective, carriers to be used for solid-state hydrogen storage for various applications can be classified into two classes: metal and complex hydrides. Related crystal structures and corresponding hydrogen sorption properties are reviewed and discussed. Fundamentals of thermodynamics of hydrogen sorption evidence the key role of the enthalpy of reaction, which determines the operating conditions (i.e., temperatures and pressures). In addition, it rules the heat to be removed from the tank during hydrogen absorption and to be delivered to the tank during hydrogen desorption. Suitable values for the enthalpy of hydrogen sorption reaction for operating conditions close to ambient (i.e., room temperature and 1–10 bar of hydrogen) are close to 30 kJ·molH2−1. The kinetics of the hydrogen sorption reaction is strongly related to the microstructure and to the morphology (i.e., loose powder or pellets) of the carriers. Usually, the kinetics of the hydrogen sorption reaction is rather fast, and the thermal management of the tank is the rate-determining step of the processes. As for the social perspective, the paper arguments that, as it occurs with the exploitation of other renewable innovative technologies, a wide consideration of the social factors connected to these processes is needed to reach a twofold objective: To assess the extent to which a specific innovation might produce positive or negative impacts in the recipient socioeconomic system and, from a sociotechnical perspective, to explore the potential role of the social components and dynamics in fostering the diffusion of the innovation itself. Within the social domain, attention has been paid to address the underexplored relationship between the gender perspective and the enhancement of hydrogen-related energy storage systems. This relationship is taken into account both in terms of the role of women in triggering the exploitation of hydrogen-based storage playing as experimenter and promoter, and in terms of the intertwined impact of this innovation in their current conditions, at work, and in daily life.


2021 ◽  
pp. 162135
Author(s):  
Arif Hariyadi ◽  
Suwarno Suwarno ◽  
Roman V. Denys ◽  
Jose Bellosta von Colbe ◽  
Tor Oskar Sætre ◽  
...  

Author(s):  
Magda Pęska ◽  
Katarzyna Smektalska ◽  
Julita Dworecka-Wójcik ◽  
Sylwia Terlicka ◽  
Władysław Gąsior ◽  
...  

2021 ◽  
pp. 151000
Author(s):  
Lan Bi ◽  
Jiangyi Ding ◽  
Jiayi Zou ◽  
Mingjie Nie ◽  
Yi Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document